
The Gromov-Lawson obstruction and the Geroch

conjecture

Luke Volk

First up, a little review a little about curvature (Riemann, Ricci,
and scalar), and then we move on to reviewing some spin geometry.
Finally, we conclude with Gromov and Lawson’s proof of the Geroch
conjecture: Tn does not admit a metric with positive scalar curvature.
Sections 2 and 3 in particular closely follow Lawson & Michelsohn’s
textbook on spin geometry [2] (it’s very good, you should read it—I
don’t do it justice recounting the ideas here).
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1 Curvature

1.1 The Riemann curvature tensor

In Rn, we may draw any polygon with a vertex p and note that parallel transport-
ing a vector v ∈ TpRn around the loop will yield v. That is, dragging v around
Rn and returning back to p leaves the vector unchanged. However, parallel
transport is not always as ideal on other manifolds. Consider S2 and a triangle γ
on S2 which traces the boundary of an octant of S2. It is easily checked visually
that parallel transport of a vector around γ does not preserve the vector.

γ

The difference between Rn and S2 in this scenario amounts to the presence
of “curvature” on S2, whereas Rn is flat. The infinitesimal analogue for this is
determining whether ∇v and ∇w commute for parallel sections v and w. That
is, the operator

[∇v,∇w] = ∇v∇w −∇w∇v

measures curvature to some degree. We define the Riemann curvature on a
manifold X to be R(v, w) ∈ End Γ(TX) by: A succinct way of defining

the curvature is by
assigning R(v, w) as the
degree to which
∇ : v 7→ ∇v fails to be a
Lie algebra
homomorphism.

R(v, w) := [∇v,∇w]−∇[v,w].

Generalizing to a connection ∇ : Γ(TX) × Γ(E) → Γ(E) on a vector bundle
E → X, the Riemann curvature of E is given analogously as the map
R : Γ(TX)× Γ(TX)× Γ(E)→ Γ(E) given by:

R(v, w)σ := [∇v,∇w]σ −∇[v,w]σ.

We sometimes fix v, w and write the Riemann curvature tensor as a map
Rv,w : Γ(E)→ Γ(E).

1.2 Ricci curvature

Because the Riemann curvature tensor is a complicated object, geometers often
turned their attention to simpler notions of curvature. One important notion
derived from the Riemann curvature tensor is the Ricci curvature tensor. The
Ricci curvature at x ∈ X is the map Ricx : TpX × TpX → R defined by

Ricx(v, w) = tr(u 7→ R(u, v)w).

This trace is in some sense an average of the Riemann curvature tensor. As
someone described it on math.stackexchange:
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For any unit vector v ∈ TpX, Ricx(v, v) is the sum of the sectional
curvatures of planes spanned by v and other elements of an or-
thonormal basis. Since it is symmetric and bilinear, it is completely
determined by Ricx(v, v) for unit vectors v.

1.3 Scalar curvature

Now suppose that we are given a Riemannian metric g on X. By non-degeneracy,
there is a unique linear map L : TxX → TxX such that for all v, w ∈ TxX:

Ricx(v, w) = g(L(v), w).

We define the scalar curvature Scal : X → R to be:

Scal(x)
def
= trg Ricx = tr(L) =

∑
j

Ricx(ej , ej) =
∑
i,j

g(R(ei, ej)ej , ei),

where e1, . . . , en is an orthonormal basis for TxX. It is in some sense a doubly
averaged curvature, but can also be seen as being related to the deviation of the
volume of a small geodesic ball on M from the volume of the standard ball in
Euclidean space by noting that:

Vol(B(p; ε) ⊂M)

Vol(B(0; ε) ⊂ Rn)
= 1− Scal

6(n+ 2)
ε2 +O(ε4). (?)

1.4 Difficulties with scalar curvature

What makes scalar curvature interesting is It’s instructive to note
Kazdan-Warner’s 1975
result where they
described which smooth
functions arise as the
scalar curvature of metrics
on a closed manifold X of
dimension at least 3. They
proved that the manifold
must satisfy one of the
following three cases:

1. Every f : X → R is
the scalar curvature
of some metric on
X.

2. f : X → R is the
scalar curvature of
some metric on X
⇐⇒ f is zero or
negative somewhere.

3. f : X → R is the
scalar curvature of
some metric on M
⇐⇒ f is negative
somewhere.

The conclusion is that any
such manifold has a metric
with negative scalar
curvature (moreover can
be chosen so it is constant
negative scalar curvature!).

perhaps its deceiving simple nature.
As a function Scal : X → R, the scalar curvature seems like a simple notion
of curvature, not taking the form of a tensor. In two dimensions, the scalar
curvature is especially simple.

Observation 1. In two dimensions, the scalar curvature is exactly twice
the Gaussian curvature.

Because of this close relation to the Gaussian curvature in dimension two,
the scalar curvature has a lot of topological significance (e.g. through the
Gauss-Bonnet theorem), the sign telling you for example that the only closed
surfaces with metrics of positive scalar curvature are those with positive Euler
characteristic, both of which do not admit a metric with scalar curvature 5 0.
In particular,

Observation 2. The 2-torus does not admit a metric with positive scalar
curvature.
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The generalized conjecture that the n-torus does not admit a metric with
positive scalar curvature is the so-called Geroch conjecture, and is considerably
more difficult than the n = 2 case seems to suggest. In higher dimensions, Gauss-
Bonnet does not explicitly feature the scalar curvature, the n = 2 case being
something of a fluke. The conjecture for n 5 7 was proved by Schoen and Yau
in the late 70s.

So why the apparent difficulty surrounding the n = 3 case? Larry Guth [1]
suggests that the definition (?) does not actually pose much use, only telling us
a limiting behaviour of small balls. Guth points out that in the case of Ricci
curvature we have the Bishop-Gromov inequality:

Proposition 1.1 (Bishop-Gromov inequality). If (X, g) is a Rieman-
nian n-manifold with non-negative Ricci curvature, then for any x ∈ X
and any radius r:

Vol(B(x; r) ⊂ X) 5 Vol(B(0; 1) ⊂ Rn)rn.

This inequality is notably stronger than (?), being a global inequality that
describes balls of any size, and thus we have a better chance of a topological
description of X popping out of the Ricci curvature than out of the scalar
curvature which merely provides us with a very localized condition for balls.

Guth remarks that geometers proved global geometric inequalities for man-
ifolds with non-negative Ricci or sectional curvature in the 30s, 40s, and 50s,
appearing relatively soon after they were pursued. On the flip side, a global
geometric inequality for metrics with non-negative scalar curvature was not
proven until the late 1970s.

The key idea in Schoen and Yau’s proof of the Geroch conjecture (which
debuted in 1978) for n 5 7 was that if (X, g) has positive scalar curvature and
Σ ⊂ X is a stable minimal hypersurface A minimal surface (one

with zero mean curvature,
i.e. area minimizing) is
stable if there are no
directions in which the
area increases.

, then on average, Σ has positive scalar
curvature, too. Note that in particular this seems promising for understanding
the Geroch conjecture for n = 3 as the (hyper)surface Σ ⊂ T 3 would be a
2-manifold with positive scalar curvature, and the scalar curvature of 2-manifolds
is much better understood due to the connection with the Gaussian curvature!

1.5 What we want to show

So now given that we are convinced to some extent that the scalar curvature is
mysterious and difficult, we will show the proof of the Geroch conjecture given
by Gromov and Lawson in the early 80s using index theory!
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2 Spin geometry

2.1 Spin manifolds and spinor bundles

We are first going to dive in to a little spin geometry, maybe doing it a little
different from how we did it in class, but I think Lawson & Michelsohn make
some interesting comments. A spin structure on an oriented Riemannian
n-manifold X is a pair (PSpin(X), ξ) where: This actually only covers

the case of n > 2. If n = 2,
then we use SO(2) instead
of Spin(n), and if n = 1
then PSO(X) ∼= X and a
spin structure is any 2-fold
covering.

(i) PSpin(X) is a principal Spin(n)-bundle.

(ii) ξ : PSpin(X)→ PSO(X) is a 2-sheeted covering, where PSO(X) is the princi-
pal SO(n)-bundle determined by the orientation of X from the orthonormal
frame bundle associated to X.

(iii) For every p ∈ PSpin(TX) and g ∈ Spin(n), we have

ξ(pg) = ξ(p)ξ0(g),

where ξ0 : Spin(n)→ SO(n) is the double cover.

The rough idea behind this is that this is equivalent to the second Stiefel-Whitney
class of TX being trivial, and tells us that the structure group is 1-connected.
Contrast this in the case where the first Stiefel-Whitney class of TX is trivial
is equivalent to TX being orientable, which means that the structure group is
0-connected! Thus in short, we see:

Observation 3. A spin manifold is a Riemannian manifold X with trivial
first and second Stiefel-Whitney classes.

A (real) spinor bundle for a spin n-manifold X is a triple (S(X),M, µ)
where:

(i) M is a left-module for C`(Rn).

(ii) µ : Spin(n)→ SO(M) is the representation given by left multiplication by
elements of Spin(n) ⊂ C`0(Rn).

(iii) S(TX) is the bundle

S(X)
def
=
PSpin(X)×M

Spin(n)
,

where the group action of g ∈ Spin(n) on (p,m) ∈ PSpin(X)×M is given
by:

g (p,m)
def
= (pg−1, µ(g)m).

A complex spinor bundle is defined analogously with C`(Rn)⊗C in place of
C`(Rn). It turns out that a connection on PSO(X) may be lifted to connection
on PSpin(X), and thus any spinor bundle S inherits a connection ∇s as well.
After some work we arrive at a notion for curvature on spinor bundles:
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Observation 4 ([2] Th.4.15, pg. 110). If Ω is the curvature 2-form on
PSO(X) and S(X) a spinor bundle on X, then the curvature Rs of S(X)
is given locally on a section σ ∈ S(E) and vectors v, w ∈ TxX by:

Rs
v,w(σ) =

1

2

∑
i<j

〈Rv,w(ei), ej〉eiejσ,

where (e1, . . . , en) is a local section of PSO(X).

Given a spin manifold and a spinor bundle S(X), we have an associated Dirac
operator which is /∂ : Γ(S(X))→ Γ(S(X)) given by:

/∂(σ)
def
=

n∑
j=1

ej · ∇s
ejσ,

the dot indicating the Clifford multiplication. If X is a compact spin manifold of
dimension 4k with the complex spinor bundle SC(X) and associated (complex)
Dirac operator /∂, we can split the spinor bundle into chiral spinor bundles,

SC(X) ∼= S+
C (X)⊕ S−C (X),

so that /∂ = /∂
+ ⊕ /∂

−
. The following can be shown using the Atiyah-Singer

Index Theorem:

Observation 5 ([2] Ex.6.3, pg.137). The operator /∂
+

is an elliptic In general, the Â-genus is
not an integer, but for
compact spin manifolds, it
is! Here, this index works
only for dimensions 4k,
though!

differential

operator, whose index is an integer called the Â-genus,

index(/∂
+

) = Â(X).

To add a twist to this idea, we can take any bundle E → X and now look at
S±C (X) ⊗ E. In particular now, the associated Dirac operator is the twisted

Dirac operator, /∂
+
E : Γ(S+

C (X)⊗E)→ Γ(S−C (X)⊗E), whose associated index
is

index(/∂
+
E) =

∫
X

chE · Â(TX),

where Â(TM) is the (total) Â-class of TX. If you do not know or forget what
the Â-class is, continue to the next subsection.

2.2 Interlude: Â

Given a vector bundle E → X, we can define the characteristic class Â(E)∈
H∗(X;Q) via the properties:
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(i) Â(f∗E) = f∗(Â(E)), for any map f : X̃ → X.

(ii) Â(E ⊕ F ) = Â(E) · Â(F ).

(iii) Given a complex line bundle ` → X with Euler class x ∈ H2(X;Q), we
have:

Â(`) =
x/2

sinh(x/2)
.

For any oriented 4k-manifold X, we define the Â-genus of X to be

Â(X)
def
=

∫
X

Â(TX).

2.3 Introducing curvature into the equation

In this subsection we introduce the machinery that will be doing the heavy lifting
for us later. Namely, we want to somehow introduce the notion of curvature into
this set up of ours.

There is another notion of Laplacian on C`(X) besides the Dirac Laplacian

/∂
2
, discovered by Salomon Bochner. For any Riemannian vector bundle E → X,

define the second covariant derivative ∇2 via:

∇2
v,wσ

def
= ∇v∇wσ −∇∇vwσ ∈ Γ(E),

for vector fields v and w on X, and a section σ ∈ Γ(E). Fixing σ, ∇2
·,·σ is a

section of T ∗X ⊗ T ∗X ⊗ E and we can take the trace of it, which leads us to
this alternative Laplacian called the connection Laplacian:

∇∗∇σ def
= − tr(∇2

·,·σ).

Observation 6. The connection Laplacian ∇∗∇ is elliptic with symbol
σ(∇∗∇)ξ = ‖ξ‖2.

Now the connection to curvature is as follows. If we consider the difference
/∂
2−∇∗∇ between our two notions of Laplacian, then we get a zero-order operator

which can be expressed in terms of curvature. Fun fact: if you use the
Hodge Laplacian and the
connection Laplacian on
the tangent bundle, TX,
then we have the identity:

∆−∇∗∇− Ric,

for the Ricci curvature.

Theorem 2.1 ([2] Th.8.2, pg.155). Given an orthonormal tangent frame
(ei), we have

/∂
2 −∇∗∇ =

1

2

n∑
j,k=1

ej · ek ·Rs
ej ,ek

.

This is the Bochner identity.
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This is all in a more general setting than we really need, so we can now be a bit
more specific. Consider a compact spin manifold X with Spinor bundle S(X).
Recall that the scalar curvature of X is given by the trace of the Ricci curvature.
After a few mundane computations which exploit symmetries of Ruvw:

Observation 7 ([2] Th.8.8, pg.160; Th.8.17, pg.164). In the special case of
a spin manifold, the Bochner identity yields the Lichnerowicz formula:

/∂
2 −∇∗∇ =

1

4
Scal.

In the twisted case, we get:

/∂
2
E −∇∗∇ =

1

4
Scal + RE ,

where RE : S(X)⊗ E → S(X)⊗ E is defined by the formula:

RE(σ ⊗ ε) def
=

1

2

n∑
j,k=1

(ejekσ)⊗ (RE
ej ,ek

ε).

Using the Lichnerowicz formula, we can already get a restriction based on
scalar curvature.

Theorem 2.2 ([2] Th.8.11, pg.161). Let X be a compact spin manifold
of dimension 4k. If X admits a metric of positive scalar curvature, then
Â(X) = 0.

3 The Geroch conjecture

The handy part of the Lichnerowicz will be that assuming positive scalar curva-
ture will allow us to force (via an estimation) a certain twisted Dirac operator to
have zero kernel which will then in turn force its index to be zero. How we then
use this to prove the Geroch conjecture is to derive a contradiction by computing
the index of the aforementioned twisted Dirac operator in a different way to
yield that it is non-zero.

3.1 Enlargeable manifolds

We will actually prove the analogue of the Geroch conjecture for a larger class of
manifolds called “enlargeable manifolds”. The idea behind this class is that an
enlargeable manifold admits covering spaces which are “large in all directions”.

In particular, Gromov had the idea of looking at spaces which admitted for
every L > 0 a covering space CL with a continuous map f : [0, 1]n → CL such
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that the distance between any two opposite faces of the cube- [0, 1]n is at least
L. Instead of using this particular formulation, Gromov and Lawson looked at a
dual concept of ε-contracting maps.

We say that a map f : X → Y is ε-contracting if for all v ∈ TX we have:

‖f∗v‖ 5 ε‖v‖.

Because constant maps are ready examples, we want to look at ones of non-zero
degree. In particular, given a ε-contracting map f : X → Y of non-zero degree
between compact spaces, we intuitively understand X to be “bigger” than Y .

With this in mind, we define a compact Riemannian n-manifold to be
enlargeable if for all ε > 0 there is an orientable Riemannian covering space
with a ε-contracting map onto Sn (with constant curvature 1) which is constant
outside of a compact set, and of non-zero degree. In particular, if we can
always find the covering space to be compact, then we say it is compactly
enlargeable.

Observation 8. The n-torus (viewed as the flat, square torus) is not
only enlargeable (considering its universal cover), but is also compactly

enlargeable as Ck
def
= Rn/(kZ)n is a finite kn-fold covering space for the

n-torus, and define a ε-contracting map f : Ck → Sn by mapping the centre
of the inscribed ball to the north pole of Sn, and the complement of said
ball collapsed to the south pole (in particular, ε = π/k).

It is a fact of enlargeable manifolds that enlargeability is independent of
the metric and depends only on the homotopy type of the manifold. Moreover,
enlargeability is closed under products and connected sums, and any manifold ad-
mitting a map of non-zero degree onto an enlargeable manifold is also enlargeable
([2] Th.5.3, pg.303).

The theorem of interest that we will sketch a proof for is the following:

Theorem 3.1 (Gromov-Lawson). A compactly enlargeable spin manifold
X cannot carry a metric of positive scalar curvature.

However, we do not need to worry about X being spin, in particular, just
that the covering space we use in the proof (following section) is spin.

3.2 The proof

We will now give a short sketch of the proof of Theorem 3.1 as it appears in
Lawson and Michelsohn ([2] Th.5.5, pg.306, where all the dirty details can be
found). The proof is via contradiction and revolves around calculating the index
of a Dirac operator in two different ways.
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Proof. Assume that such an X has a metric with Scal = k0, for some
k0 > 0. First we note that without loss of generality, X has even dimension
2n. If it didn’t, we could consider X × S1 which does. Take the following
observation for granted:

Observation 9. It is possible to find a complex vector bundle E0 over
S2n with the property that the top Chern class cn(E0) 6= 0. In particular,

chE0 = dimE0 +
1

(n− 1)!
cn(E0),

because Sn has trivial cohomology in for degrees 1 5 i < n.

We can give it a unitary connection ∇E0 and denote its corresponding
curvature by RE0 .

Because X is compactly enlargeable, let ε > 0 and choose a finite
orientable covering X̃ → X with a corresponding ε-contracting map

f : X̃ → S2n of non-zero degree. We pull back the bundle E0 to E
def
= f∗E0,

which has a corresponding connection ∇E def
= f∗∇E0 .

Take a (complex) spinor bundle SC(X̃) ∼= S+
C ⊕ S

−
C and consider the

twisted spinor bundle SC(X̃)⊗E with Atiyah-Singer operator /∂E . Recall
the Lichnerowicz formula in this case as:

/∂
2
E −∇∗∇ =

1

4
Scal + RE . (†)

Another observation can be made:

Observation 10. RE depends linearly on the components of the cur-
vature tensor RE of E and is a symmetric bundle endomorphism of
SC(X̃)⊗ E.

There is a constant kn = k(n) depending on n such that:

‖RE‖ def
= sup{g(REσ, σ) | ‖σ‖ = 1} 5 kn‖RE‖,

but RE is the pull-back of RE0 by the ε-contracting map f . Thus, with
some work we observe:

Observation 11.

‖RE‖ 5 kn‖RE‖ 5 knε2‖RE0‖.
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Because the sphere S2n is of constant curvature 1 and we can pick ε <√
k0/2kn, we see that:

‖RE‖ < 1

4
k0.

But then by (†), we have that if σ 6= 0, then /∂E(σ) 6= 0. Thus /∂
+
E and /∂

−
E

have trivial kernel, so:

index /∂
+
E = dim ker /∂

+
E − dim ker /∂

−
E = 0.

Note that we have basically just given a proof for Theorem 2.2. Now we
compute the index topologically using the Atiyah-Singer index theorem!
We compute it as follows:

index(/∂
+
E) =

∫
X̃

chE · Â(TX̃)

=

∫
X̃

(
dimE +

1

(n− 1)!
cn(E)

)
· Â(TX̃)

=

∫
X̃

dimE · Â(X̃) +
1

(n− 1)!
cn(E)

=
1

(n− 1)!

∫
X̃

cn(E), (applying something like Theorem 2.2)

=
1

(n− 1)!

∫
X̃

cn(f∗E0)

=
1

(n− 1)!

∫
X̃

f∗(cn(E0))

=
deg f

(n− 1)!

∫
S2n

cn(E0),

which is non-zero, recalling that deg f is in particular non-zero as well!
Thus we note a contradiction and there is no metric with Scal > 0! �

Note that Gromov & Lawson have a more general result for (not necessarily
compactly) enlargeable spin manifolds, but it uses the relative index theorem
and so in Lawson and Michelsohn’s book, they focus on the case above. As well,
Gromov-Lawson also shows that any metric with Scal = 0 on X must be flat.
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