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This document is an amateur’s attempt to fill in a modern treatment
of topic of Banach algebras and the Gel’fand transform with historical
details. Historical remarks will be indicated by a font like this for the
sake of interest.
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1 Where we pick up the story

1.1 Normed vector spaces

Early in the history of functional analysis, special spaces like `p, Lp, or C[a, b] domi-
nated the interest of mathematicians. It wasn’t until the late 1910s that mathematicians
decided to take a step towards generality.

One of the first, Eduard Helly (1884–1943) Helly considered vector subspaces
of CN, though he did not use the
term “norm” nor even the modern
notation for a norm. Helly was
also the first to give an example of
non-reflexive Banach spaces.

considered in 1921 more general “normed
sequence spaces”, contrasting with the work of Schmidt and Riesz. Building off of Helly’s
work , it was more or less natural to move the spotlight to arbitrary normed vector spaces.
Both Hans Hahn (1879–1934) and Stefan Banach (1892–1945) did just that, indepen-
dent of each other, in particular restricting themselves to normed vector spaces which are
complete with respect to the norm.

1.2 Spectral theory

Our pseudo-historical approach to the introduction of algebras to analysiswill follow closely
the history of spectral theory. It was more or less David Hilbert (1862–1943) who was re-
sponsible for spurring on spectral theory in his work in 1906. He dealt with the subject
through bilinear forms, but Erik Ivar Fredholm (1866–1927) opted for operators. Frigyes
Riesz Though Riesz did not end up using

uniform convergence from the
operator norm, but rather strong
convergence.

(1880–1956) took it upon himself in 1913 to translate much of Hilbert’s work on
spectral theory into the language of operators.

Itwas 1926when (a very young) John vonNeumann (1903–1957) arrived at Göttingen
as Hilbert’s assistant. In his historical account of functional analysis, expert storyteller
Dieudonné weaves the tale:

These were the hectic years during which quantum mechanics was
developing at breakneck speed, with a new idea popping up every
few weeks from all over the horizon. The theoretical physicists
who were developing the new theory were groping for adequate
mathematical tools, trying in sucession infinite matrices without any
consideration of convergence (as late as 1924, most physicists did
not even know what a finite matrix was!), differential operators,
“continuous” matrices (whatever that might mean) etc. It finally
dawned upon them that their “observables” had properties which
made them look like Hermitian operators in Hilbert space, and that,
by extraordinary coincidence, the “spectrum” of Hilbert (a name
which he had apparently chosen from a superficial analogy) was to be
the central conception in the explanation of the “spectra” of atoms.

And thus von Neumann was sucked into helping Hilbert to these physical ends. It was
von Neumann who had first generalized the concept of a Hilbert space away from matri-
ces towards an axiomatic definition. This paved the way to the modern development of
the spectral theory of normal and Hermitian operators on Hilbert spaces on which he sub-
sequently published several papers on between 1929 and 1932. One Dieudonné notes that this was

useful to the end of quantum
mechanics since most operators
there were defined on a proper
subspace.

especially key habit
von Neumann had was to work intrinsically from axioms rather than from examples as the
pioneers before him did.
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2 Algebras

2.1 Normed and involutive algebras

Let H be a Hilbert space. Riesz was likely the first to consider the algebra

L(H) = {T : H → H | T linear and continuous},

the algebra of endomorphisms on H. By algebra, we mean a C-vector space
with an associated bilinear product operation between vectors, and in particular
L(H) has a product given by composition. It is probably more accurate to say that
Riesz was the first who considered L(H) as an algebra in addition to using its norm and
strong topology, using it in the context of spectral theory and normal operators.

It is worth mentioning that we are explicitly not including unital in our
definition. An algebra lacking a unit is not exactly difficult to remedy, as we can
always embed a non-unital algebra A into a unital one, A⊕C1, where 1 will be
our unit.

Observation 1. Any non-unital algebra can be embedded into a unital
algebra.

Associated to L(H) is the operator norm,

‖T‖ := inf{M > 0 | ∀x ∈ H . ‖Tx‖H 5M‖x‖H}, T ∈ L(H),

which behaves nicely with regards to the product of the algebra:

‖ST‖ 5 ‖S‖‖T‖, S, T ∈ L(H).

An associative algebra with such a norm (i.e. sub-multiplicative) is called a
normed algebra. With regards to the unital extension A⊕C1 from before, any
unital normed algebra can be given an equivalent norm such that ‖1‖ = 1.

Observation 2. Any unital normed algebra can be given an equivalent
norm such that ‖1‖ = 1.

Example 2.1. Already given is the normed algebra L(H) of endomor-
phisms of a Hilbert space H. Another reoccurring example will be the
space B(X) of bounded complex-valued functions on a non-empty set
X with the norm

‖f‖ := sup
x∈X
|f(x)|,
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which has the point-wise product:

(fg)(x) := f(x)g(x), f, g ∈ B(X).

The normed algebra L(H) was also an interest of von Neumann’s who was interested in
particular about its “subalgebras”. A subalgebra of an algebra is a subset which is
closed under the algebra product. Besides its product, L(H) also has the adjoint
operation,

T 7→ T ∗, T ∗ defined by ∀x, y ∈ H . 〈Tx, y〉 = 〈x, T ∗y〉.

The adjoint has the following properties:

(i) The adjoint operation is conjugate-linear.

(ii) For T, S ∈ L(H) we have (ST )∗ = T ∗S∗.

(iii) (T ∗)∗ = T .

With this additional structure we can then ask about subalgebras closed under
this operation, called involutive subalgebras, or *-subalgebras, and these
were indeed the types of subalgebras von Neumann Dieudonné notes that Artin and

Noether had been working on rings
with descending chain conditions
at the time, applying the theory to
linear representations of groups
and number theory. This was the
inspiration for von Neumann who
wanted to see if something similar
was possible with involutive
subalgebras of L(H), substituting
the chain condition with suitable
topological restrictions—this was
the debut of von Neumann
algebras.

occupied himself with—mind you, 5
years before the elementary theory of normed algebras was developed!

2.2 Banach algebras and the spectrum

The development of the theory of normed algebras we owe to Israel Gel’fand (1913–2009)
in 1941. Gel’fand’s key idea was to extend spectral theory to the elements of a unital
normed algebraA by merely implementing Riesz’s definition of the spectrum:

σ(x) := {ζ ∈ C | x− ζ1 is not invertible in A}, x ∈ A,

where x ∈ A is invertible if there exists an y ∈ A such that xy = yx = 1 (it is
necessarily unique).

Key to Gel’fand’s results was the completeness of the normed algebra that he used. A
normed algebra which is complete with respect to the topology induced by its
norm is called a Banach algebra.

Example 2.2. Both L(H) More generally, L(X) is
Banach if and only if X is.

and B(X) are Banach algebras, and we have
the following new examples:

(1) If A is a Banach algebra, then a subalgebra B ⊆ A is Banach if and
only if B is closed in A.

(2) The completion of a normed algebra is a Banach algebra via consid-
ering limits of Cauchy sequences.

(3) If X is locally compact and Hausdorff, then the set C0
c (X) of contin-

uous functions on X with compact support is a normed subalgebra
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of B(X) whose closure is a Banach algebra C(X) consisting of
continuous functions on X which vanish at infinity.

If I am not mistaken (which I very well might be) the following fact (a proof of
which can be found in e.g. Lang) is only a theorem of Banach algebras, rather
than general normed algebras:

Observation 3. If A is a unital Banach algebra, then

A× := {x ∈ A | x is invertible}

is an open subset of A.

Using this, we have the following result about the spectrum for unital Banach
algebras:

Proposition 2.3. If A is a unital Banach algebra and x ∈ A, then σ(x)
is a non-empty compact subset of C.

Sketch. For a contradiction, we
suppose σ(x) = ∅. We define
the resolvent function,

R(ζ) = (x− ζ)−1,

which we show is weakly holo-
morphic and bounded, so by Li-
ouville’s theorem it is constant.
Hahn-Banach is then applied to
show the contradiction that R
is identically zero.

To show compactness, we show
σ(x) is closed and bounded.

Proof. Suppose for a contradiction that σ(x) = ∅. Consider the map
R : C→ A defined by:

R(ζ) = (x− ζ1)−1,

often called the resolvent function of x. It’s easy to establish by
direct computation that:

R(ζ1)R(ζ2) =
R(ζ1)−R(ζ2)

(ζ1 − ζ2)
.

If φ ∈ A∗, then for ζ0 ∈ C we have:

lim
ζ→ζ0

φ(R((ζ))− φ(R(ζ0))

ζ − ζ0
= lim
ζ→ζ0

φ(R(ζ)R(ζ0)) = φ(R(ζ0)2),

thus φ ◦R is a holomorphic function. Note that for |ζ| > ‖x‖, we have:

R(ζ) = −1

ζ
(1− ζ−1x)−1 = −1

ζ

∞∑
n=0

xn

ζn
−→
|ζ|→∞

0.

We then apply Liouville’s theorem:

Every bounded entire function must be constant.
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In particular, φ ◦R ≡ 0 for all φ ∈ A∗. By the Hahn-Banach theorem,
for each ζ ∈ C there exists φ ∈ A∗ such that φ(R(ζ)) = ‖R(ζ)‖ and
‖φ‖ = 1, so R(ζ) = 0 for all ζ ∈ C, so R ≡ 0, a contradiction! Thus
σ(x) 6= ∅.

To prove σ(x) is compact, note that for |ζ| > ‖x‖ we have:

x− ζ1 = −ζ(1− ζ−1x),

where (1− ζ−1x)−1 =
∑∞
n=0

xn

ζn , so x− ζ1 ∈ C \ σ(x) and

σ(x) ⊆ {ζ ∈ C | |ζ| 5 ‖x‖}

is clearly bounded. To show σ(x) is closed (and thus compact), consider
the function S : ζ 7→ x − ζ1 so that we write ζ ∈ C \ σ(x) ⇐⇒ ζ ∈
S−1(A×). But S is provably continuous and so by the fact that A× is
open, C \ σ(x) is as well, so σ(x) is closed. Hence σ(x) is compact. �

Theorem 2.4 (Polynomial spectral mapping theorem). Suppose that
p ∈ C[z]. Then:

σ(p(x)) = p(σ(x)) = {p(ζ) | ζ ∈ σ(x)}.

Proof. Let deg p = 1 and α, λ, λ1, . . . , λn ∈ C such that:

p− λ = α(z − λ1) . . . (z − λn).

Thus p(x) − λ1 = α(x − λ11) . . . (x − λn1). If x1, . . . , xn ∈ A mutually
commute, then it’s a straightforward exercise in symbol pushing that:

a1a2 . . . an ∈ A× ⇐⇒ αi ∈ A×, 1 5 i 5 n.

If p(x)−λ1 is non-invertible (λ ∈ σ(p(x))), then we can find some 1 5 i 5 n
so that x− λi1 is also non-invertible (λi ∈ σ(x)), where we see:

p(λi) = λ =⇒ λ ∈ p(σ(x)).

Conversely, if µ ∈ σ(x) and λ = p(µ), then it follows from above that µ = λi
for some 1 5 i 5 m, so p(x) = λ1 is non-invertible. Hence p(µ) ∈ σ(p(x)).
�

Now given that the spectrum σ(x) of an x ∈ A is non-empty, we define the
spectral radius of x by:

ρ(x) := sup
ζ∈σ(x)

|ζ|.

Gel’fand had obtained a remarkable formula for the spectral radius:
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Theorem 2.5 (Spectral radius formula). Suppose that A is a unital
Banach algebra and x ∈ A. Then:

ρ(x) = lim
n→∞

‖xn‖1/n.

Sketch. For one inequality, we
again appeal to the fact that
the resolvent function is weakly
holomorphic on the complement
ofD(0; ρ(x)). The uniform bound-
edness principle allows us to con-
clude that the weakly bounded
set

{xn/ζn | n ∈ N}
is sup-bounded. The other in-
equality is given by the spectral
mapping theorem.

Proof. Similar to what we had shown in the proof of Proposition
2.3, we can show that the resolvent function R : C \ σ(x) → A× of x
is weakly holomorphic on the complement of the disc D(0; ρ(x)). If
φ ∈ A∗, then in the complement of the disc D(0; ‖x‖) we have the
series expansion:

φ(R(ζ)) = −
∞∑
n=0

φ(xn)

ζn+1
,

which vanishes at infinity. Thus the series expansion extends to the
entirety of the complement of D(0; ρ(x)). Thus

lim
n→∞

φ(xn)

ζn
= 0.

Thus {xn/ζn | n ∈ N} is a weakly bounded set. Hence by the uniform
boundedness principle (applied to the family {φ ∈ A∗ 7→ φ(xn/ζn) |
n ∈ N}),

sup
n∈N

‖xn‖
|λ|n

= M <∞.

Hence we have:

‖xn‖1/n 5 K1/n|ζ| =⇒
|λ|→ρ(x)

lim sup
n∈N

‖xn‖1/n 5 ρ(x).

Conversely, from the spectral mapping theorem and ρ(x) 5 ‖x‖ we
have:

ρ(x) = ρ(xn)1/n 5 ‖xn‖1/n =⇒ ρ(x) 5 lim inf
n∈N

‖xn‖1/n.

Hence we have:

lim sup
n→∞

‖xn‖1/n 5 ρ(x) 5 inf
n∈N
‖xn‖1/n,

and the limit exists. �
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3 Gel’fand theory

3.1 Characters and maximal ideals

An algebra is said to be commutative if the product operation of the algebra
is commutative. Likely inspired by the theory of Abelian groups, Gel’fand turned to
studying commutative Banach algebras via defining characters for a commutative Banach
algebra. If A is a commutative Banach algebra, then a character of A is a
non-zero map χ : A → C satisfying:

(i) χ is linear.

(ii) For all x, y ∈ A, χ(xy) = χ(x)χ(y).

More generally, a map χ : A → B of algebras satisfying the above is called an
algebra homomorphism. Thus characters are simply non-zero complex-valued
homomorphisms on A.

If A is unital, then for any character χ and x ∈ A:

χ(x) = χ(x1) = χ(x)χ(1),

and thus χ(1) = 1. As a result,

x− χ(x)1 ∈ kerχ =⇒ χ(x) ∈ σ(x),

for each x ∈ A. In particular, this means that |χ(x)| 5 ‖x‖, so the character χ
is necessarily continuous. This same argument extends to a non-unital Banach
algebra by looking at the unitization A ⊕ C1 and the character χ̃(x, ζ) :=
χ(x) + ζ.

Observation 4. A character χ of a Banach algebra is continuous with
‖χ‖ = 1, and χ(x) ∈ σ(x).

As per usual, the kernel of a homomorphism is an important object to study.
In the context of an algebra homomorphism φ : A → B, the kernel I = kerφ
satisfies the conditions:

(i) I is a linear subspace of A.

(ii) If x ∈ I and y ∈ A, then xy, yx ∈ I.

More generally, a subset I satisfying these conditions is known as an (two-sided)
ideal of A. Thus kerφ is an ideal of A.

Suppose that χ is a character of a unital Banach algebra A. The kernel
I = kerχ is an ideal and is necessarily proper (otherwise χ ≡ 0). If y /∈ I, then
for any x ∈ I, we can write x as:

x =

(
x− yχ(x)

χ(y)

)
︸ ︷︷ ︸

∈I

+ y
χ(x)

χ(y)︸ ︷︷ ︸
∈Cy

,
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which gives a decomposition A = I +Cy. Thus if we take any ideal J containing
both I and some element not in I, then J = A. This means I is a maximal
proper ideal Most often, people say I is

maximal when they mean
both maximal and proper
because the “maximality”
of A goes without saying.

. Thus any character corresponds to a maximal ideal.

Observation 5. To each character of a unital Banach algebra, we can
associate a maximal ideal.

Clearly, if M is any maximal ideal of A, then M ∩A× = ∅. Because A \ A× is
closed we have

M ⊆ M̄ ( A \ A×,

but M is maximal and so M̄ = M . Thus any maximal ideal is closed.

Observation 6. The maximal ideals of a unital Banach algebra are closed
subsets.

The closed ideals of a Banach algebra A are very useful to the end of making new
Banach algebras because then the quotient algebra A/I is also Banach:

Proposition 3.1. If A is a Banach algebra with a closed ideal I, then
A/I is a Banach algebra with respect to the norm:

‖x+ I‖ = inf
a∈I
‖x+ a‖.

Moreover, if A is unital and I is proper, A/I is also unital.

Proof. It is an easy exercise in algebra to show A/I is an algebra with
the product (x+ I)(y + I) = (xy + I). Moreover, it is a normed algebra
because:

‖xy + I‖ := inf
a∈I
‖xy + a‖

5 inf
a,b∈I

‖xy + xb+ ay + ab︸ ︷︷ ︸
∈I

‖

= inf
a,b∈I

‖(x+ a)(y + b)‖

5 ‖x+ I‖‖y + I‖,

so A/I is a normed algebra. It is then a theorem of Banach spaces that if
X is Banach and Y ≤ X is closed =⇒ X/Y is Banach.

Finally, if I is proper, then it does not contain 1 and thus 1+I operates
as the unit. Moreover, a bonus is that ‖1‖ = 1 =⇒ ‖1 + I‖ = 1. �
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In particular, since a maximal ideal M ⊂ A is closed, then A/M is a Banach
algebra. Those who have done a little bit of ring theory might already see where
this is going! Suppose that A is unital and commutative, M a maximal ideal,
and x+M 6= 0 be a non-invertible element of A/M . Appealing to commutativity,
xA+M is a proper ideal of A, and thus we have the inclusions:

M ⊆ xA+M ( A,

and so by maximality of M , xA + M = M =⇒ x ∈ M , so x + M = 0—a
contradiction. Hence any non-zero element of A/M is invertible.

Observation 7. If M is a maximal ideal of a commutative unital Banach
algebra A, then any non-zero element of A/M is invertible.

Note that in this case, A/M cannot have a non-zero proper ideal. An algebra
satisfying this property is called simple. In the commutative unital case,
Gel’fand and Mazur showed that simple algebras are really—well, simple:

Theorem 3.2 (Gel’fand-Mazur). The only simple commutative unital
Banach algebra (over C) up to isomorphism is C.

Proof. Suppose that x ∈ A is not of the form ζ1 for ζ ∈ C. Let ξ ∈ σ(x)
(remember, it’s non-empty!) and define an ideal

I = (x− ξ1)A,

which is proper in A. Hence I = {0} and

x− ξ1 = 0 ⇐⇒ x = ξ1.

Thus A ∼= C. �

Example 3.3. A quick application of the Gel’fand-Mazur theorem is
that the quaternions are not a complex Banach algebra (though they are
a real Banach algebra!). Indeed, the quaternions are a division algebra
(each non-zero element is invertible) and hence it is simple (if an ideal
contains an invertible element, then it is the entire algebra). Thus the
quaternions would be a simple commutative unital Banach algebra, and
thus be isomorphic to C. This would be nonsensical.

Returning to the case where A is commutative unital and M is a maximal ideal,
A/M is a simple commutative Banach algebra, and thus A/M = C(1+M). We
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can then consider the composition:

A A/M Cπ ϕ

where π is the quotient map and ϕ(ζ1+M) := ζ. The linear map χ = ϕ◦π : A →
C then has the property:

χ(xy) = χ(x)χ(y),

with kerχ = M . Thus χ is a character of A.

Observation 8. To each maximal ideal of a commutative unital Banach
algebra, we can associate a character.

Together with association of characters to maximal ideals (their kernels), this
gives:

Theorem 3.4. There is a bijective correspondence between the charac-
ters and maximal ideals of a commutative unital Banach algebra.

It is extremely important that the commutativity assumption not be dropped.
This can be seen with a relatively simple algebra:

Example 3.5. Consider the Banach algebra M(n,C) of n× n complex
matrices, n > 1. Let eij be the matrix which is zero everywhere except
for 1 in the (i, j)-position. If χ is a character on M(n,C), then for i 6= j:

0 = χ(0) = χ(e2ij) = χ(eij)
2,

and so χ(eij) = 0. However, this means

χ(eii) = χ(eijeji) = χ(eij)χ(eji) = 0,

and in particular,

χ(1) = χ

(
n∑
i=1

eii

)
=

n∑
i=1

χ(eii) = 0,

a contradiction to χ being a character!

3.2 The Gel’fand transform

Dieudonné notes that Marshall Stone (1903–1989) had already considered the maximal ide-
als of Boolean rings A Boolean ring is a commutative

ringR such that for each x ∈ R
we have x2 = x and 2x = 0.

in 1937. It was known that one could transfer the notion of spectrum
to measures by way of projection-valued measures, and more generally to Boolean algebras.
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Stone noted in 1935 that Boolean algebras are in bijective correspondence with Boolean
rings, and thus went on to consider how the notion of the spectrum passes to Boolean rings.
In particular, the spectrum manifested itself as the set of maximal ideals in the Boolean ring,
and he later introduced a topology on the spectrum by taking for each ideal the set of max-
imal ideals containing it, calling these the closed sets. In this respect, Gel’fand’s approach
to the spectrum of commutative unital Banach algebras was completely warranted at the
time.

Suppose A is a commutative unital Banach algebra. Denote the set of
characters on A by Â. Note that Â is a subset of A∗ and thus inherits a
subspace topology (sometimes called the Gel’fand topology) from A∗ given
by the weak-* topology (which In particular, it makes it

into a topological group.
makes A∗ into a Hausdorff space).

Proposition 3.6. If A is a commutative unital Banach algebra, then
Â is a weak-* closed subset of the unit ball of A∗, and hence is weak-*
compact.

Proof. We have already shown that each χ ∈ Â has ‖χ‖ = 1, and so Â
is contained in the unit ball of A∗. If (χα) ⊆ Â → χ ∈ A∗, then for each
x ∈ A we have:

χα(x)→ χ(x).

Thus in particular for x, y ∈ A we have:

χ(xy) = lim
α
χα(xy) = lim

α
χα(x)χα(y) = χ(x)χ(y),

so χ ∈ Â. Hence Â is weak* closed. Thus by the Banach-Alaoglu theorem,
Â is weak-* compact. �

Recall that for any χ ∈ Â and x ∈ A, we have:

χ(x) ∈ σ(x).

We can write this in a different manner as follows. For each x ∈ A, define a
function x̂ : Â→ C by:

x̂(χ) := χ(x), χ ∈ X̂.
With this notation, the observation that χ(x) ∈ σ(x) for each χ ∈ Â becomes:

im x̂ ⊆ σ(x).

Now if ζ ∈ σ(x), suppose x− ζ1 is non-zero. Then define:

I = {(x− ζ1)y | y ∈ A},

which is a proper, non-zero ideal of A. We can then apply Zorn’s lemma to
find a maximal ideal M of A containing I, and hence containing x− ζ1. This
argument works in general for any non-invertible element of A.

12



Observation 9. An element of a commutative unital Banach algebra is
invertible if and only if there exists a maximal ideal containing it.

As a result of this, our correspondence between characters and maximal ideals
of A yields a character χ with kernel kerχ = M , and hence:

σ(x) ⊆ im x̂,

and so we actually have equality.

Observation 10. If x is an element of a commutative unital Banach
algebra, then:

σ(x) = im x̂.

The functions x̂ are all actually continuous (inherited from the weak-* topology),
and thus are in C(Â) Recall that if X is locally

compact and Hausdorff,
then the set C(X) is the
closure of C0

c (X).

. Consider now the map Γ: A → C(Â) given by:

Γ(x) := x̂.

Note for x, y ∈ A and ζ ∈ C we have:

ζ̂x+ y(χ) = χ(ζx+ y) = ζχ(x) + χ(y) = ζx̂(χ) + ŷ(χ),

x̂y(χ) = χ(xy) = χ(x)χ(y) = x̂(χ)ŷ(χ), χ ∈ Â,

and so Γ is an algebra homomorphism, which we call the Gel’fand transform.
After noting that

im Γ(x) = σ(x) ⊂ {|ζ| 5 ‖x‖},

it is easy to see that:
‖Γ(x)‖∞ = ρ(x) 5 ‖x‖.

Taking into account these properties, it’s no wonder why the set Â is often called
the spectrum of A.

The Gel’fand transform is often called the Gel’fand representation. The
algebra C(X) of continuous complex-valued functions on X that vanish at
infinity is in some sense an archetypal algebra. If X is compact, then C(X) is
exactly the algebra of all continuous complex-valued functions and it is unital.
Because Γ is an algebra homomorphism, it in some sense is a representation (à
la representations of groups and algebras) of A, and thus one may study A by
considering its image under the Gel’fand transform.

Problematically, at this point it is unclear whether Γ is injective or surjective.
Failure of injectivity correlates with a loss of information across the Gel’fand
transform, while failure of surjectivity means that we are working with a subal-
gebra of C(Â). It turns out that the Gel’fand transform is in general neither
injective nor surjective.
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That being said, a modest attempt at discussing the injectivity of Γ can be
made. Note that x ∈ A is in every maximal ideal of A if and only if for all
χ ∈ Â we have χ(x) = 0. Thus in this case, x̂ = 0, and so equivalently x ∈ ker Γ.
The intersection of all maximal ideals of A is called the Jacobson radical of
A, which we will notate as J (A). This presents the condition:

Γ is injective ⇐⇒ J (A) = {0}.

An algebra with a zero Jacobson radical is called semi-primitive and decom-
poses as a sub-direct product of “primitive rings”, another object which gets a
lot of attention from algebraists.

4 Odds and ends

In the sections that follow are things that we do not prove or explain in as much
detail as one might want, but we do our best to try to try to get ideas across
the best we can.

4.1 A cute example

Suppose that G is a group which we endow with a topology such that the
multiplication (and inversion) are continuous (called a topological group), and
such that it is locally compact and Hausdorff.

Consider the space C0
c (G) of continuous functions on G with compact support

(with norm ‖ ·‖∞). For each g ∈ G we have left-multiplication by g which defines
a map Lg : G→ G : h 7→ gh. Each Lg induces a map λg on C0

c (G) given by: The use of the inverse is to
force the relation
λgh = λg ◦ λh.λg(f) = f ◦ Lg−1 .

In a similar way that the Gel’fand transform defined a “representation” of
A in C(Â), the association g 7→ λg is a group homomorphism and gives a
“representation” of G in C0

c (G). A bounded linear functional f is said to be
left-translation invariant if for all g ∈ G we have:

f ◦ λg = f.

The following theorem is far from obvious:

Theorem 4.1. If G is a locally compact Hausdorff topological group,
then there exists an m ∈ Cc(G)∗ which is left-translation invariant.

Using the Riesz-Markov-Kakutani representation theorem:

If X is a locally compact Hausdorff space, then for any positive linear
functional ψ on C0

c (X), there is a unique regular Borel measure µ
on X such that

ψ(f) =

∫
X

f(x) dµ(x), f ∈ C0
c (X).
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we can find a unique measure µ on the Borel algebra of G such that:

m(f) =

∫
G

f(x) dµ(x).

Because m was left-translation invariant, for each g ∈ G we have that µ ◦Lg = µ
(that is, µ is also left-translation invariant). As it turns out, the pair (m,µ) are
uniquely determined up to scaling by a positive scalar. The measure µ is known
as the left Haar measure on G.

With the Haar measure as described above, we define L1(G,µ) as C0
c (G)

with the norm:

‖f‖1 :=

∫
G

|f(x)| dµ(x),

which has a product given by convolution:

(f ∗ g)(t) :=

∫
G

f(x)g(s−1t) dµ(s).

Without proof, we have:

Proposition 4.2. L1(G,µ) with the product given by the above convo-
lution is a Banach algebra.

Now we suppose in particular that G is Abelian—this is key as it will allow us
the commutativity condition for L1(G,µ). Consider the set G̃ of non-zero group
homomorphisms χ : G → S1 (that is, group characters). To each χ ∈ G̃ we
can define:

ϕχ(f) =

∫
G

f(x)χ(x) dµ(x).

Without getting into the algebra, ϕχ is a character in ̂L1(G,µ) and indeed every
character is of this form! Thus we have the bijective correspondence:

G̃ ←→ ̂L1(G,µ)

χ 7−→ ϕχ

The topology of ˜L1(G,µ) induces a topology on G̃, and G̃ itself is then a locally
compact Hausdorff topological group, called the Pontryagin dual of G. Then

we look at what we have just done: if we identify ̂L1(G,µ) with G̃, then the
Gel’fand transform is identified with the map Γ: L1(G,µ)→ C(Ĝ) given by:

Γ(f)(χ) = φχ(f) =

∫
G

f(x)χ(x) dµ(x).

Now suppose for the heck of it that we consider G := R. It turns out that for
each y ∈ R, we have a character:

χy(x) := e2πixy, x ∈ R.
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The map y 7→ χy is an homeomorphism as it turns out that every character is of
this form. Thus we see:

ϕχy
(f) =

∫
R
f(x)e−2πixy dµ(x) = f̂(y),

the Fourier transform.

Observation 11. The Fourier transform As it turns out, so is the
Laplace transform!

is a special case of the Gel’fand
transform.

4.2 C*-algebras and the Gel’fand-Naimark theorem

We take a little look into the future after the Gel’fand transform. Collaborating with Mark
Naimark (1909–1978), Gel’fand decided (much like von Neumann) to consider involution
structures.

An involution on a normed algebra A is a map x 7→ x∗ satisfying for all
x, y ∈ A:

(i) * is conjugate linear.

(ii) (x∗)∗ = x.

(iii) (xy)∗ = y∗x∗.

(iv) ‖x∗‖ = ‖x‖. By (iv), an involution is
always continuous.

If A has an involution, we call it involutive or a *-algebra. If in addition the
involution satisfies

‖x∗x‖ = ‖x‖2, x ∈ A,

then we say that A is a C∗-algebra.

Example 4.3. If X is compact, then C(X) is a commutative C∗-
algebra with the supremum norm and the involution given by complex
conjugation. As well, the space B(H) of bounded linear operators on
a Hilbert space H is a C∗-algebra with the operator norm and the
involution given by the adjoint operator.

An element x of a C∗-algebra is called self-adjoint if x∗ = x. It turns out that
the spectrum of a self-adjoint element is necessarily real (one might have guessed
this!). A *-homomorphism It’s a fact of C∗-algebras

that any *-homomorphism
has norm 5 1 and that any
injective *-homomorphism
is in fact a *-isomorphism.

is an algebra homomorphism which commutes
with the involution. The key result of Gel’fand and Naimark in 1943 was the following
eponymous theorem which characterized the behaviour of the Gel’fand transform for *-
algebras:
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Theorem 4.4 (Gel’fand-Naimark). Suppose that A is a commutative
unital Banach *-algebra. Then the Gel’fand transform Γ is an isometric
*-isomorphism if and only if A is a C∗-algebra.

The Gel’fand-Naimark theorem initiated a new interpretation of Hilbert’s spectral theory
as it allowed mathematicians to consider C∗-algebras in a more abstract, algebraic context.

Further reading and references

� “An Invitation to C∗-Algebras”, William Arveson.

� “A Course in Commutative Banach Algebras”, Eberhard Kaniuth.

� “History of Functional Analysis”, Jean Dieudonné. Dieudonné is superbly
written, and often very
witty.

� “Functional Analysis: Spectral Theory”, V.S. Sunder.

� “Real and Functional Analysis”, Serge Lang.
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