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Characteristic classes are algebraic invariants for vector bundles which
measure the degree of curvature. To discuss characteristic classes, it
is first necessary to develop a bit of intuition and machinery (namely,
the theory of connections) to discuss curvature. Though there are
many routes to discuss the theory of characteristic classes, we choose
to use Chern-Weil theory to introduce and explore the theory. Finally
we state the Chern-Gauss-Bonnet theorem and apparently lose all
will to continue to write anything more.

Contents

1 Connections 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Affine connections . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Connections on vector bundles . . . . . . . . . . . . . . . . . . . 4
1.4 Local description of connections . . . . . . . . . . . . . . . . . . . 8

2 Chern-Weil theory 12
2.1 The Chern-Weil homomorphism . . . . . . . . . . . . . . . . . . . 12
2.2 Categorical interpretation . . . . . . . . . . . . . . . . . . . . . . 17
2.3 An application of Riemannian bundles . . . . . . . . . . . . . . . 18

3 Characteristic classes 20
3.1 Pontryagin classes . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 The Euler class . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1 Connections

1.1 Motivation

If we want to differentiate a vector field X : Rn → Rn in the direction of another
vector field Y : Rn → Rn we use the directional derivative, defined for p ∈ Rn
as:

(∇YX)(p) := lim
t→0

X(p+ tY (p))−X(p)

t
.
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Intuitively (as might be clear from the definition), (∇YX)(p) gives the infinitesi-
mal rate of change of X in the direction of Y at the point p.

Example 1.1. Consider R2 with

X(x, y) = (−y, x), Y (x, y) = (1, 0).

If p = (x, y) ∈ R2, then we can compute:

(∇YX)(p) = lim
t→0

X((x, y) + tY (x, y))−X(x, y)

t

= lim
t→0

(−y, x+ t)− (−y, x)

t

= lim
t→0

(0, t)

t

= (0, 1).

or in the usual manifold notation with coordinates (x, y),

∇YX =
∂

∂y
.

It can be shown that for f ∈ C∞(Rn):

(i) ∇YX is a vector field.

(ii) ∇fYX = f(∇YX).

(iii) ∇Y (fX) = (Y (f))X + f(∇YX).

These properties summarize the “important” aspects Namely, homogeneity in
the first argument, and
Leibniz’s product rule in
the second.

of the directional derivative
which come to mind when we make use of it. However, this formula only works
on Rn due to two problems in particular:

1. The expression “p+ tY (p)” does not make sense on an arbitrary manifold
as addition of a point to a vector is not defined. This can be fixed relatively
easily, though. What we are wanting is just a curve γ which passes through
p at t = t0 with the direction given by Y , and the definition would be:

(∇YX)(p) = lim
t→t0

X(γ(t))−X(γ(t0))

t− t0
.

An example of an alternative to γ = p + tY (p) that we can use on an
arbitrary manifold with any Y is the flow φt of Y .

2. Assuming we fixed the prior issue, we now are taking the difference

X(φt(p))︸ ︷︷ ︸
∈Tφt(p)M

−X(p)︸ ︷︷ ︸
∈TpM

,
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the minuands not necessarily lying in the same tangent space. Thus this
difference is not well-defined!

The reason why Rn works so well is due to the fact it is affine. This does not
mean we have completely lost hope, though. In the way outlined above, the
concept of a directional derivative encapsulates a method for associating vectors
between tangent spaces.

1.2 Affine connections

We will augment our manifold M with an additional structure in the form of an
R-bilinear map Here, Γ(TM) denotes the

set of sections of the the
tangent bundle (i.e., vector
fields) on M .

,
∇ : Γ(TM)× Γ(TM)→ Γ(TM),

defined by the defining properties of the directional derivative, f ∈ C∞(M):

(i) ∇fYX = f(∇YX).

(ii) ∇Y (fX) = (Y (f))X + f(∇YX).

This map ∇ is called an affine connection (or just “connection”). The imme-
diate question is whether a connection exists for any manifold. Indeed, this is
always possible! Proof sketch. First, we

can show that if
∑
ti = 1,

then for a family {∇i} of
connections, ∇ :=

∑
ti∇i

is a connection. Because a
manifold is locally Rn, we
have a locally-defined
connection being the
standard directional
derivative on Rn (often
called the Euclidean
connection), and so by
utilizing partitions of unity,
we can sew together the
Euclidean connections
defined on charts to a
global connection.

Proposition 1.2. Any manifold admits an affine connection.

In Rn, a vector Xp in TpRn is associated to vector Xq ∈ TqRn by “dragging”
Xp along a path γ between p and q, meanwhile keeping the vector Xγ(t) “parallel”
to Xp for all t. In terms of the natural connection ∇ on Rn (i.e. the directional
derivative), we do not want the section X to change in the direction of the
section γ′. In other words we want:

∇γ′(t)Xγ(t) = 0,

which adequately describes this parallel dragging.
With this observation in mind, a connection ∇ on M specifies a notion of

parallelity on M . If γ : (a, b)→M is a curve on M , then we say that a section
X : im γ →M is parallel along γ if

∇γ′X = 0.

If a vector Y0 ∈ Tγ(t0)M extends to a parallel section Y along γ, then Y is the
parallel transport of Yγ(t0) along γ. Without getting too far into the details,
in local coordinates ∇γ′Y = 0 and Yγ(t0) = Y0 defines an ordinary differential
equation and initial condition which Picard-Lindelöf tells us exists and is unique.
Thus ∇ provides us a method for associating vectors between tangent spaces.

In Rn, we may draw any polygon with a vertex p and note that parallel
transporting a vector Xp ∈ TpRn around the loop will yield Xp. That is, dragging
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Xp around Rn and returning back to p leaves the vector unchanged. However,
parallel transport is not always as ideal on other manifolds. Consider S2 and
a triangle γ on S2 which traces the boundary of an octant of S2. It is easily
checked visually that parallel transport of a vector around γ does not preserve
the vector.

γ

Thedifference between Rn and S2 in this scenario amounts to the presence
of “curvature” on S2, whereas Rn is flat. The infinitesimal analogue Parallel transport is

commonly said to be the
local realization of a
connection, whereas the
connection is the
infinitesimal realization of
parallel transport.

for this is
determining whether ∇X and ∇Y commute for parallel sections X and Y . That
is, the operator

[∇X ,∇Y ] = ∇X∇Y −∇Y∇X
measures curvature to some degree. However, there is a small hiccup with using
only this operator as the curvature: even on Rn, [X,Y ] does not necessarily
vanish, despite being flat. In these cases, [∇X ,∇Y ] will include a possibly non-
zero term ∇[X,Y ]. To avoid this, and thus force the curvature on Rn to be zero
(and thus “flat”), we define the curvature to be R(X,Y ) ∈ End Γ(TM) by: A succinct way of defining

the curvature is by
assigning R(X,Y ) as the
degree to which
∇ : X 7→ ∇X fails to be a
Lie algebra
homomorphism.

R(X,Y ) := [∇X ,∇Y ]−∇[X,Y ].

1.3 Connections on vector bundles

The tangent bundle TM is the prototypical example of a “vector bundle”, a
manifold with a projection which has for each point of M a fibre which is endowed
with the structure of a vector space. Recall that a rank k vector bundle E
over M is a manifold E with an associated smooth projection map π : E �M
such that for each p ∈M :

(i) where Ep := π−1(p) has the structure of a k-dimensional vector space.

(ii) There exists a “trivializing neighbourhood” U ⊆M of p with the property
that:

π−1(U) ∼=
diff.

U × Rk,

which restricts to the linear isomorphism Ep ∼= {x} × Rk.

Given a vector bundle E →M , the manifold M is called the base space of the
bundle. Denote by Γ(E) the set of sections of the bundle π : E →M .

The goal for this section will be to discuss the generalization of connections
on manifolds to connections on vector bundles, and instead of focusing on only
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the tangent bundle of a manifold, we will enjoy the comfort of a more general
theory that applies to any vector bundle.

Example 1.3. The simplest example of a vector bundle over a manifold
M is the trivial bundle, M × Rk. A trivializing chart is simply the
product of a chart on M with the identity on Rk.

Example 1.4. The Möbius band is not
orientable, while the
cylinder is, so they are not
diffeomorphic.

Consider S1 as the base space, and to each p ∈ S1,
associate a copy of R. Visually, it is easy to come up with two distinct
bundles over S1 in this way: the cylinder, and the Möbius band. These
are examples of line bundles over S1.

Exercise 1.5. Is the vector bundle E over S1 with two twists (i.e.
adding another twist to the Möbius band) distinct from these two vector
bundles?

Hint. Consider the boundary of E.

Example 1.6. The cotangent bundle T ∗M of a manifold is a vector
bundle. As well, the kth exterior power ΛkT ∗M is also a vector bundle.

Example 1.7. Consider the set

L = {(`, v) ∈ RPn × Rn+1 | v ∈ `}.

This We can make an analogous
construction of the
tautological complex line
bundle over CPn.

is called the tautological line bundle on RPn, given the projec-
tion π : (`, v) 7→ `. As an exercise, try coming up with the trivializing
charts for this bundle.

A vector bundle morphism between πE : E → M and πF : F → N is a
pair (ϕ,Φ) of smooth maps ϕ : M → N and Φ: E → F such that the following
diagram commutes:

E F

M N

Φ

πE πF

ϕ

i.e. πF ◦ Φ = ϕ ◦ πE ,

and such that for each p ∈ M we have the restriction of Φ to the fibres,
Φp : Ep → Fϕ(p). This gives us several different options for categories depending
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on what we are interested in, such as the category of vector bundles over a given
manifold, of a given rank, or just any real vector bundle at all.

What we have already established is an affine connection which happens to
be a structure on the tangent bundle of M . With this inspiration, a connection
on a vector bundle π : E →M is an R-bilinear map: Note well that the first

argument is still a section
of TM (i.e. a vector field),
and is not a section of E
like the other argument.

∇ : Γ(TM)× Γ(E)→ Γ(E),

such that for f ∈ C∞(M) we have:

(i) ∇fXs = f(∇Xs).

(ii) ∇X(fs) = (X(f))s+ f(∇Xs).

In this way, any affine connection on M is a connection on the tangent bundle.

Exercise 1.8. This makes connections a
convex structure. This is
ubiquitous in geometry.

Show that if ∇(1) and ∇(2) are connections on E →M ,

then for any t ∈ [0, 1] we have (1− t)∇(1) + t∇(2) is also a connection
on E →M .

We can then use a similar approach to the proof of the existence of an affine
connection (utilizing the trivializing neighbourhoods of the vector bundle) to
conclude the following:

Proposition 1.9. Any vector bundle admits a connection.

The curvature of a connection on a vector bundle is defined analogously to
the affine case,

R(X,Y ) := [∇X ,∇Y ]−∇[X,Y ].

Exercise 1.10. If E = TM , these
properties actually make R
into a (1, 3)-tensor field:
a section of the bundle of
tensors of type. (1, 3)
(contravariant order 1,
covariant order 3),

T (1,3)M = TM⊗1⊗T ∗M⊗3.

That is, at a point p, Rp is
a map

Rp : TpM×TpM×TpM → TpM.

More generally, if E is any
vector bundle, then at a
point, it is a map

Rp : TpM×TpM → End(Ep).

Show that the curvature R is alternating in the first
two arguments:

R(X,Y ) = −R(Y,X),

and that it is C∞(M)-multilinear as a map

Γ(TM)× Γ(TM)× Γ(E)→ Γ(E).

If we want a local description of a connection, then we would hope that
connections behave nicely locally. That is, we want connections to have a notion
of restriction to open subsets of M . The concept of “local operators” captures
this behaviour.

Let ϕ : Γ(E)→ Γ(F ) be an R-linear map where both E,F →M are vector
bundles over M . The map ϕ is a local operator if whenever s ∈ Γ(E) vanishes
on an open set U , then so does ϕ(s).

6



Exercise 1.11. Using bump functions, show that being C∞(M)-linear
is sufficient to be a local operator.

Recall that a local section of π : E →M over an open subset U ⊆M is a
smooth map s : U → E which exhibits the section property, π ◦ s = idU . To be consistent, we also

denote Γ(E) := Γ(M,E).
We

denote the set of local sections over U to be Γ(U,E). The “local” aspect of local
operators arises from how they behave with respect to local sections. Given
a local operator ϕ : Γ(E) → Γ(F ), how might we apply ϕ to a local section
s ∈ Γ(U,E)?

Exercise 1.12. Using bump functions, show that when given a local
section s ∈ Γ(U,E), we can find for any p ∈ U a global section s̃ ∈ Γ(E)
which agrees with s on some neighbourhood V ⊆ U of p.

Assuming you have done your homework, for each p ∈ U , we can find a global
section s̃ ∈ Γ(E) which agrees with s on some neighbourhood V of p. Applying
ϕ to s̃ seems to be the obvious course of action, but we have made a choice in
picking s̃. Fortunately, since we are only concerned about what happens on U ,
we can take advantage of ϕ being a local operator.

Indeed, if ˜̃s ∈ Γ(E) is another global section which agrees on V with s
and s̃, then s̃ − ˜̃s vanishes on V , so ϕ(s̃ − ˜̃s) vanishes on V using that ϕ is a
local operator. Thus we have that ϕ(s̃) and ϕ(˜̃s) agree on V . Thus we have a
well-defined local section ϕ|U (s) ∈ Γ(U,F ) defined by:

ϕ|U (s)p := ϕ(s̃)p.

Exercise 1.13. Show that for any t ∈ Γ(E) we have:

ϕ|U (t|U ) = ϕ(t)|U .

Note that they are not
C∞(M)-linear in the
second argument, so it is
not that easy.

Now we can prove that connections are local operators!

Proposition 1.14. Suppose ∇ is a connection on E → M . If one of
X ∈ Γ(TM) or s ∈ Γ(E) vanishes on an open subset U ⊆M , then ∇Xs
does, too.

Proof. Because ∇ is C∞(M)-linear in the first argument, it is easily a local
operator Γ(TM)→ Γ(E). So now suppose s vanishes on U ⊆M . For each
p ∈ U we can find a bump function f around p supported in U . On one
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hand, we note:

(∇X(fs))p = (Xp(f))sp + f(p)(∇Xs)p = (∇Xs)p,

appealing to Xp(f) = 0 (since f is locally constant at p). However, by
assumption, s vanishes on the support of f , so fs ≡ 0, so ∇X(fs) = 0,
and we conclude:

(∇Xs)p = 0.

�

So as it turns out, connections behave nicely with respect to restriction. We
thus can view a connection ∇ restricted to an open subset U ⊆ M , seen as a
map Γ(U, TM)× Γ(U,E)→ Γ(U,E).

1.4 Local description of connections

Now that we know for certain that connections behave nicely to restriction, we
can consider connections restricted to charts. In particular, we (well at least I
am!) interested in a local description of a connection.

First, we (perhaps for some readers, re)visit the analogous concept to bases
for vector bundles. If E → M is a rank k vector bundle, then a frame over
an open subset U ⊆M is a collection e1, e2, . . . , ek ∈ Γ(U,E) such that at each
p ∈ U , the collection e1(p), e2(p), . . . , ek(p) is a basis of Ep. The existence of a
frame is equivalent to the existence of a trivialization.

Example 1.15. On the other hand, the
hairy ball theorem states
that there is no
non-vanishing vector field
on S2, and so TS2 is not
trivial.

Consider the tangent bundle TT 2 of the torus, T 2.
There are two independent non-vanishing vector fields on the torus (one
around the major, and one around the minor circumference). Thus TT 2

admits a global frame and thus is trivial, TT 2 ∼= T 2 × R2.

So picking a trivializing set U ⊆ M for our vector bundle E → M , we
automatically have a frame e1, e2, . . . , ek over U . Any s ∈ Γ(U,E) may be
expressed locally on U as:

s =

k∑
i=1

aiei.

Thus for a local section X ∈ Γ(U, TM), we may write ∇Xs locally as:

∇Xs =

k∑
i=1

∇X(aiei) =

k∑
i=1

(
(X(ai))ei + ai(∇Xei)

)
,

and so the local description of ∇Xs depends on our understanding of ∇Xei.
Being sections themselves, we may write

∇Xei =

k∑
j=1

ωji (X)ej ,
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where the ωji depend on X, acting as C∞(U)-linear functions Γ(TM,U) →
C∞(U).

Exercise 1.16. Show that a C∞(M)-linear function Γ(TM)→ C∞(M)
is a 1-form on M .

Being 1-forms, the ωji are 1-forms on U , called connection forms. The
matrix ω :=

[
ωij
]

is called the connection matrix of ∇ with respect to the
frame e1, e2, . . . , ek.

Analogously, we can repeat this process with the curvature, R(X,Y ) and see
that its local description depends on understanding R(X,Y )ei, which we may
write as:

R(X,Y )ei =

k∑
j=1

Ωji (X,Y )ej .

The Ωj
i inherit bilinearity and alternativity from R(X,Y ), and hence can be

seen as 2-forms on U , called curvature forms. The matrix Ω :=
[
Ωij
]

is called
the curvature matrix of ∇ with respect to the frame e1, e2, . . . , ek.

The definition of the curvature, R, depends on the connection, and so there
ought to be some dependency of the curvature forms on the connection forms.
In what follows we will calculate this relation, but beware—it is not the most
pretty derivation! We will take it slowly, though. Recall,

R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ],

so we first try calculating the first term

[∇X ,∇Y ] = ∇X∇Y −∇Y∇X

by computing∇X∇Y ej (the other half will be easy to write down after computing
just this term). We start by applying the definition of the connection forms and
using linearity of ∇:

∇X∇Y ej = ∇X

(∑
k

ωkj (Y )ek

)
=
∑
k

∇X
(
ωkj (Y )ek

)
,

which sets us up to use the Leibniz rule in order to apply the definition of the
connection forms again:∑

k

∇X
(
ωkj (Y )ek

)
=
∑
k

X(ωkj (Y ))ek + ωkj (Y )∇Xek

=
∑
k

X(ωkj (Y ))ek +
∑
k

∑
`

ω`j(Y )ωk` (X)ek,
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and so we have the two expressions:
∇X∇Y ej =

∑
k

X(ωkj (Y ))ek +
∑
k

∑
`

ω`j(Y )ωk` (X)ek,

∇Y∇Xej =
∑
k

Y (ωkj (X))ek +
∑
k

∑
`

ω`j(X)ωk` (Y )ek.

Noting that ∇[X,Y ]ej =
∑
ωkj ([X,Y ])ek, we can group terms together to get:

R(X,Y )ej =
∑
k

(
X(ωkj (Y ))− Y (ωkj (X)− ωkj ([X,Y ])

)
ek

+
∑
`

(ω`j(Y )ωk` (X)− ω`j(X)ωk` )ek,

where the fist term can be re-written with the identity for 1-forms α: If you are unfamiliar with
this identity, try proving
it! Let α = f dg for
f, g ∈ C∞(M) and
simplify both sides
separately.

dα(X,Y ) = X(α(Y ))− Y (α(X))− α([X,Y ]),

and the second term with the definition,

(α ∧ β)(X,Y ) = α(X)β(Y )− α(Y )β(X),

to get:

R(X,Y )ej =
∑
k

dωkj (X,Y )ek +
∑
`

(ω`j ∧ ωk` )(X,Y )ek

=
∑
k

(dωkj +
∑
`

ω`j ∧ ωk` )(X,Y )ek.

Because R(X,Y )ej =
∑

Ωkj (X,Y )ek, we get the following relation:

Proposition 1.17.

Ωij = dωij +
∑
`

ωj` ∧ ω
`
i .

Note using matrix notation, the relation can be written as:

Ω = dω + ω ∧ ω.

Exercise 1.18. A quick application of this is one of Bianchi’s identities
which characterizes the derivative of the curvature matrix:

dΩ = Ω ∧ ω − ω ∧ Ω.
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After showing this, try to show more generally that:

d(Ωn) = Ωn ∧ ω − ω ∧ Ωn.

All this we have done after choosing a frame. How does a changing the frame
affect ω and Ω? We consider this now. Suppose that ẽ1, ẽ2, . . . , ẽk is another
frame over U , inducing the connection and curvature matrices ω̃ and Ω̃. Each ẽi
can be written in terms of our first frame,

ẽi =

k∑
j=1

Ajiej .

This gives a change of basis matrix A =
[
Aij
]

which we may view as a map

U → GL(k,R). Writing frames as row vectors e :=
[
e1 · · · ek

]
and ẽ =[

ẽ1 · · · ẽk
]
, we have:

ẽ = eA.

With this notation, we can write:

∇Xe = eω(X),

and so we can view ∇e as a function X 7→ eω(X), writing:

∇e = eω.

To determine how a change of frame affects the connection matrix, we can
compute ∇ẽ in terms of e by way of the relation ẽ = eA: Note that the Leibniz rule

for ∇ states that

∇X(fs) = (X(f))s+f(∇Xs).

Because df(X) := X(f),
the rule is equivalently

∇X(fs) = df(X)s+f∇Xs.

∇ẽ = ∇(eA) = (∇e)A+ e dA = eωA+ e dA.

We will want to write this in the form of ẽB in order to deduce an expression
for ω̃. Because e = ẽA−1, we have:

eωA+ e dA = ẽA−1ωA+ ẽA−1 dA = ẽ(A−1ωA+A−1 dA),

and thus because ∇ẽ = ẽω̃, we have shown:

ω̃ = A−1ωA+A−1 dA.

You can use Proposition
1.17 and the equation for
the connection matrix to
deduce an equation for the
curvature matrix.

Analogously, considering the curvature R, we see that for a frame e which induces
the curvature form Ω,

Re = eΩ.

Carrying out a similar computation, we see:

Rẽ = ReA = eΩA = ẽA−1ΩA,

and because Rẽ = ẽΩ̃, we have shown:

Ω̃ = A−1ΩA.

Take a moment and just appreciate how pretty that is. Sure, the change of
frame equation for the connection form is simple too, but the equation for the
curvature matrix remarkably indicates that a change of frame acts on Ω by
conjugation by A. The rest of these notes hinges on this fact.

11



2 Chern-Weil theory

2.1 The Chern-Weil homomorphism

A polynomial p on gl(r,R) is called invariant if for all A ∈ GL(r,R),

p(A−1XA) = p(X).

We denote the set of invariant polynomials on gl(r,R) by Inv(gl(r,R)).

Example 2.1. Consider det(X − λI) where λ is an indeterminate and
X an r × r matrix of indeterminates. We may write:

det(X + λI) = f0(X) + f1(X)λ+ . . .+ fk−1(X)λr−1 + λr,

whose coefficients fi are polynomials in r2 many variables. Note that:

det(A−1XA+ λI) = det(A−1(X + λI)A) = det(X + λI),

and so fi(A
−1XA) = fi(X) as a result. Hence the fi are invariant

polynomials. We call them the coefficients of the characteristic
polynomial of −X.

Example 2.2. If X is an r × r matrix of indeterminates and n = 1,
then define

Σn(X) := tr(Xn),

which is a polynomial in r2 many variables. Because trace is conjugate
invariant, Σn(X) is an invariant polynomial. We call the resulting family
of polynomials the trace polynomials.

These two families of polynomials are not just examples, but extremely useful
to the theory of invariant polynomials due to the following theorem (which we
will not prove):

Theorem 2.3. Let fn be the characteristic polynomials and Σn the trace
polynomials. Then:

Inv(gl(r,R)) = R[f0, f1, . . . , fr−1]

= R[Σ1,Σ2, . . . ,Σr].

Thus to prove any R-linear property of invariant polynomials, it suffices to
prove it on a generating set of either {f0, . . . , fr−1} or {Σ1, . . . ,Σr}.
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Let ∇ be a connection on a rank r vector bundle E → M . Fix an open
set U ⊆ M with frame e and curvature matrix Ω. We have seen that under a
change of coordinates, a curvature matrix is acted on by conjugation. Thus if
we have p ∈ Inv(gl(r,R)), then p(Ω) is independent of choice of frame because if
we did change the frame, it would act on Ω by conjugation by some A. But p is
invariant and thus:

p(A−1ΩA) = p(Ω).

Hence p(Ω) is a differential form (if p is homogeneous and of degree k, then p(Ω)
is a 2k-form) on U which is invariant under change of frame.

This is especially nice with regards to extending p(Ω) off of U . Indeed, if
we take a covering (Uα)α∈I of trivializing charts on M , each with an associated
curvature form Ωα (with respect to a frame eα), then on any overlap Uα ∩ Uβ ,
p(Ωα) and p(Ωβ) agree. Thus p(Ω) extends uniquely to a globally defined
differential form on M !

So for each p ∈ Inv(gl(r,R)) we may associate a natural differential form
p(ω) ∈ Ω(M). In what follows, we will show that the cohomology class of p(Ω)
is both meaningful and useful. To even belong to a class, p(Ω) must be closed so
we demonstrate this first.

Exercise 2.4. If A and B are square matrices of forms of degrees a and
b respectively, then:

(i) tr(A ∧B) = (−1)ab tr(B ∧A).

(ii) d trA = tr dA.

Using these observations, if n = 1, then:

d tr(Ωn) = tr(d(Ωn)) = tr(Ωn ∧ ω − ω ∧ Ωn) = tr(Ωn ∧ ω)− tr(ω ∧ Ωn) = 0,

and thus the forms Σn(Ω) (associated to the trace polynomials) are all closed
forms. By Theorem 2.3, any such form p(Ω) is closed! Thus p(Ω) belongs to
some cohomology class [p(Ω)] ∈ Ω∗dR(M).

As it stands, to define Ω we need to choose a connection ∇, and so the
cohomology class [p(Ω)] seems like it depends on ∇. This would be inconvenient
as it limits the scope of the theory of these particular cohomology classes to
vector bundles with fixed connections, rather than vector bundles in general.

Due to the convexity of connections (see Exercise 1.8), we have any two
connections ∇(0) and ∇(1) on E →M , are connected by a path of connections
∇(t) := (1 − t)∇(0) + t∇(1), t ∈ [0, 1]. We will use this fact to show that the
cohomology class of [p(Ω)] does not depend on choice of connection.

For each t ∈ [0, 1], ∇(t) induces connection and curvature forms ωt and Ωt.
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Exercise 2.5. Check that ωt = (1− t)ω0 + tω1.

After checking this, we get that (ωt)t∈[0,1] depends smoothly on t. We can
write Ωt in terms of ωt (Proposition 1.17), and thus Ωt also depends smoothly
on t.

Alike to the proof of the polynomials p(Ω) being closed, we will rely on
the trace polynomials Σn(Ω) = tr(Ωn) generating Inv(gl(r,R)). Indeed, if the
Σn(Ω) do not depend on the choice of a connection, then certainly a general
p(Ω) does not, either. Hypothetically, if d

dt tr(Ωnt ) = dα for some globally defined
differential form α, then integrating both sides, we get: Here we use that d

commutes with
∫
· dt. This

is equivalent to
differentiation under the
integral sign. If you bug
me enough I will include a
proof, otherwise I am too
lazy to show you.

tr(Ωn1 )− tr(Ωn0 ) =

∫ 1

0

d

dt
tr(Ωnt ) dt =

∫ 1

0

dα dt = d

∫ 1

0

αdt︸ ︷︷ ︸
global exact form

.

Passing to the cohomology classes, any exact form is zero and thus we would
have

[tr(Ωn1 )] = [tr(Ωn0 )],

and so [Σn(Ω)] would not depend on the choice of connection! Of course, this
strategy hinges on finding this nice α, so we set out to do just that.

Exercise 2.6. Show that:

d

dt
trα = tr

(
dα

dt

)
.

In what follows, we suppress the t index of Ωt (writing simply Ω) and utilize
a dot for the derivative of a form with respect to t:

d

dt
tr(Ωn) = tr

(
dΩn

dt

)
= tr(Ω̇ ∧ Ωn−1 + Ω ∧ Ω̇ ∧ Ωn−2 + . . .+ Ωn−1 ∧ Ω̇)

= n tr(Ωn−1 ∧ Ω̇),

and then we note that Ω = dω + ω ∧ ω (suppressing the t in ωt), so:

Ω̇ =
d

dt
(dω + ω ∧ ω) = dω̇ + ω̇ ∧ ω + ω ∧ ω̇,

14



so continuing,

d

dt
tr(Ωn) = n tr(Ωn−1 ∧ Ω̇)

= n tr(Ωn−1 ∧ (dω̇ + ω̇ ∧ ω + ω ∧ ω̇))

= n tr(Ωn−1 ∧ dω̇ + Ωn−1 ∧ ω̇ ∧ ω + Ωn−1 ∧ ω ∧ ω̇)

= n tr(Ωn−1 ∧ dω̇ − ω ∧ Ωn−1 ∧ ω̇ + Ωn−1 ∧ ω ∧ ω̇)

= n tr(Ωn−1 ∧ dω̇ + (Ωn−1 ∧ ω − ω ∧ Ωn−1) ∧ ω̇)

= n tr(Ωn−1 ∧ dω̇ + d(Ωn−1) ∧ ω̇), (Exercise 1.18)

= n tr(d(Ωn−1 ∧ ω̇))

= d
(
n tr(Ωn−1 ∧ ω̇)

)
, (Exercise 2.4).

Thus we indeed have that d
dt tr(Ωn

t ) is an exact form, but a problem is that it
might depend on the neighbourhood (since Ωt is given by a choice of frame).
Luckily, we can repeat the same trick we used to show that p(Ω) could be pieced
together to a globally defined differential form on M .

Exercise 2.7. Show that n tr(Ωn−1 ∧ ω̇) can be extended to a globally
defined differential form on M .

Now our argument is more or less complete for the following proposition:

Proposition 2.8. The cohomology class of Σn(Ω) = tr(Ωn) is indepen-
dent of connection.

Proof. Suppose that ∇(0) and ∇(1) arre connections on E →M , a vector
bundle of rank r. Define ∇(t) := (1− t)∇(0) + t∇(1) which is a connection
and induces a connection matrix ωt and curvature matrix Ωt. As shown
above,

d

dt
tr(Ωnt ) dt = d(n tr(Ωn−1

t ∧ ω̇)),

and integrating both sides yields:

tr(Ωn1 )− tr(Ωn0 ) = d

∫ 1

0

n tr(Ωn−1
t ∧ ω̇) dt,

noting that the integrand is globally defined (you did do your homework,
didn’t you?) the right hand is an globally defined exact form and hence

15



passing to cohomology classes we deduce:

[tr(Ωn0 )] = [tr(Ωn1 )].

Thus Σn(Ω0) and Σn(Ω1) are cohomologous. �

Corollary 2.9. Because Inv(gl(r,R)) = R[Σ1, . . . ,Σr], if p ∈ Inv(gl(r,R)),
then the cohomology class of p(Ω) is independent of connection.

Let us just stop and appreciate what we have just shown so far:

1. A rank r vector bundle E →M admits a connection ∇ which induces a
notion of curvature, R.

2. Locally, R is captured as a matrix of 2-forms, the curvature matrix Ω.

3. Under a change of frame, Ω changes by conjugation.

4. An invariant polynomial p ∈ Inv(gl(r,R)) induces a globally defined differ-
ential form p(Ω), independent of choice of frame.

5. The form p(Ω) is closed and hence belongs to a de Rham cohomology class.

6. Moreover, the cohomology class of p(Ω) is independent of ∇.

One remarkable thing (but not certainly the most or only remarkable thing) is
that the cohomology classes [p(Ω)] are derived from curvature, and thus it seems
they ought to provide information about the curvature. However, the notion of
curvature we defined is defined in terms of the connection, ∇! So if [p(Ω)] does
measure some aspect of curvature, then because it is independent of ∇ it must
besomething more intrinsic than our defined notion of curvature. The prize of
what we have developed so far is the following theorem:

Theorem 2.10 (Chern-Weil). Let E be a rank r vector bundle E →M
with a connection ∇ and induced curvature matrix Ω. Then the map

CE : Inv(gl(r,R))→ H∗(M)

defined by Recall that an R-algebra is
a vector space V endowed
with a bilinear product. An
algebra homomorphism
preserves the products of
the algebras, and in
particular for CE , we have

CE(pq) = [p(Ω) ∧ q(Ω)].

CE(p) := [p(Ω)],

is an algebra homomorphism, called the Chern-Weil homomorphism.

The elements of im CE are called characteristic classes, and the forms p(Ω)
are called the characteristic forms.

16



2.2 Categorical interpretation

Let f : N →M be a smooth map. If π : E →M is a rank r vector bundle over
M , then we can pull back E to a bundle over N . To o this, we define

f∗E := {(p, v) ∈ N × E | f(p) = π(v)},

that is, f∗E consists of all pairs (p, v) ∈ N × E such that v ∈ π−1(f(p)).
Associated to f∗E are two projections,

π1 : f∗E → N, π2 : f∗E → E.

The bundle projection of f∗E is projection to the first factor, π1. Any trivializing
neighbourhood (U,ϕ) of E pulls back to a trivializing neighbourhood (f−1(U), ψ)
of f∗E, where ψ : is defined by

ψ(p, v) = (p, π2(ϕ(v))).

This bundle is called the pullback bundle of E. This construction is
equivalent to the
categorical pullback.

Any section s ∈ Γ(E) induces
a section f∗s ∈ Γ(f∗E) defined by precomposition:

f∗s := s ◦ f.

Exercise 2.11. Verify the details that the pullback bundle f∗E is
indeed a vector bundle.

If ∇ is a connection on E →M , it induces a connection matrix ωe relative
to the local frame e over U ⊆M . If ẽ is another frame such that ẽ = eA, then
we have seen that the connection form induced by ẽ is:

ωẽ = A−1ωeA+A−1dA.

We can then compute the pullback of ωẽ to a matrix of 1-forms on f−1(U):

f∗(ωẽ) = (f∗A)−1f∗(ωe)f
∗A+ (f∗A)−1df∗A.

Because ẽ = eA implies f∗ẽ = (f∗e)(f∗A) (and because connection matrices are
sufficient to describe connections locally), ∇ induces a unique connection on
f∗E with connection matrix f∗(ωe), relative to the frame f∗e on f−1(U). We
will denote this pullback connection by f∗∇.

The pullback connection f∗∇ has connection frame f∗(ωe) relative to f∗e,
and so the induced curvature form on f∗E is given by:

d(f∗(ωe)) + f∗(ωe) ∧ f∗(ωe) = f∗(dωe + ωe ∧ ωe) = f∗Ωe.
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Exercise 2.12. Show that for all p ∈ Inv(gl(r,R)) we have:

p(f∗(Ωe)) = f∗(p(Ωe)).

This sets us up with a commutative diagram:

VBunrN H∗(N)

VBunrM H∗(M)

p

f∗ f∗

p

Thus each invariant polynomial p induces a map associated to a manifold M ,

CM :
{

isomorphism classes
of v.bundles over M

}
→ H∗(M),

and hence induces a natural transformation C between the functors VBunr and
H∗. This provides an alternative definition of characteristic classes, the natural
transformation itself being called a characteristic class (associated to p).

2.3 An application of Riemannian bundles

A Riemannian metric on M is an assignment of an inner product gp : TpM ×
TpM → R on TpM to each p ∈M such that if X,Y ∈ Γ(TM), then g(X,Y ) is
a smooth function on M defined by

p 7→ gp(Xp, Yp).

The local existence problem of metrics is dead simple (an exercise in linear
algebra), and noting that a finite sum of metrics is again a metric, a partition of
unity makes quick work of the global existence problem.

With the use of metrics, one can interpret lengths and angles, and in particular,
with a metric comes a notion of orthogonality. We extend the notion of metrics to
vector bundles. A Riemannian metric on a vector bundle E →M is likewise
an assignment of an inner product gp to the fibre Ep for each p ∈M such that
if s, t ∈ Γ(E), then g(s, t) is a smooth function on M . We call a vector bundle
with a metric a Riemannian bundle. We define the length of a v ∈ Ep to be

‖v‖ :=
√
gp(v, v),

and as one might guess from gp(v, w) one can deduce an angle between v, w ∈ Ep.
From this, we have the concept of orthogonality when gp(v, w) = 0. This
extends easily to the concept of orthonormality for subsets of Ep.
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Exercise 2.13. Show that any vector bundle admits a Riemannian
metric.

Given a Riemannian bundle E → M with metric g, a connection ∇ is
compatible with g if for all X ∈ Γ(TM) and s, t ∈ Γ(E), we have:

X(g(s, t)) = g(∇Xs, t) + g(s,∇Xt).

This is yet another analogue of the Leibniz rule.

Exercise 2.14. We say that sections s, t ∈ Γ(E) are parallel if at each
p ∈M , gp(sp, tp) = ‖sp‖‖tp‖. Show that a connection ∇ is compatible
with g if and only if g(s, t) is constant for any two parallel sections
s, t ∈ Γ(E) along a curve.

Exercise 2.15. Show that any vector bundle admits a metric connec-
tion.

Suppose that ∇ is a metric connection on a vector bundle E →M . Instead
of picking any old frame, let us choose an orthonormal frame, e. Note that:

X(g(ei, ej)) = g(∇Xei, ej) + g(ei,∇Xej)

= g

(∑
k

ωki (X)ek, ej

)
+ g

(
ei,
∑
k

ωkj (X)ek

)
= ωji (X) + ωij(X),

and so if i 6= j we get ωji = −ωij and ωii = 0. Thus the connection matrix ω is
skew-symmetric.

Exercise 2.16. Show that if ω is skew-symmetric, then so is Ω.

What is convenient about metric connections is that we have that the connec-
tion and curvature matrices are predictable, and for our purposes, characteristic
classes are independent of choice of connection. So using a metric connection
as a representative connection might yield some easier proofs for more general
theorems about characteristic classes.

Exercise 2.17. Show that if a curvature matrix Ω is skew-symmetric,
then Ω2n is symmetric and Ω2n+1 is skew-symmetric.

19



Hint. What is (Ω ∧ Ω)>?

Automatically, this observation gives that Σ2n+1(Ω) := tr(Ω2n+1) = 0 for all
n, and thus their associated characteristic classes are also zero. Even though we
picked a metric connection, this class is independent of this fact and is zero no
matter the connection. Even more, a homogeneous polynomial of odd degree
has an odd trace polynomial Σ2n+1 dividing each monomial term. This gives
the following result:

Proposition 2.18. If p ∈ Inv(gl(r,R)) is a homogeneous polynomial of
odd degree n, then [p(Ω)] = 0 in H2n(M).

Thus as a set of generators of H∗(M), we have the even trace polynomials!

3 Characteristic classes

3.1 Pontryagin classes

Note that we can show
that f2n+1 is of odd
degree, much like Σ2n+1,
and thus they correspond

Recall the invariant polynomials fn which are the coefficients of the characteristic
polynomial of −X. The nth Pontryagin class of E →M is defined to be:

pn(E) :=

[
f2n

(
i

2π
Ω

)]
∈ H4n(M).

The factor of 1/2π in pn(E) is there in order to force there to be a representative
of pn(E) which when integrated over a compact oriented submanifold gives an
integer. Note that if E →M is rank r, then:

det((i/2π)Ω + I) = 1 + p1(E) + p2(E) + . . .+ pbr/2c(E),

which is called the total Pontryagin class of E, denoted by p(E).
Now let M be a closed, orientable 4n-dimensional manifold and suppose

k1, . . . , km are positive integers who sum to n. Then the Pontryagin number
Pk1,...,km(M) is defined as:

Pk1,...,km(M) :=

∫
M

pk1(TM) . . . pkm(TM).

One of the purposes of Pontryagin numbers is to vanish on a manifold that is a
“boundary”. We say that two oriented manifolds M1 and M2 are cobordant if
there exists an oriented manifold N such that: The notation M1 −M2

means that union of of M1

and M2, where M2 is
given the opposite
orientation. Much like how
{0} and {1} are cobordant
via N = [0, 1].

∂N = M1 −M2.

With this definition, M is a boundary if and only if it is cobordant to the empty
set. Note that in this case, if a compact, oriented 4n-manifold M = ∂N then:

Pk1,...,km(M) =

∫
∂N

pk1(TM) . . . pkm(TM) =

∫
N

d(pk1(TM) . . . pkm(TM)) = 0.
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So all Pontryagin numbers of M vanish when it is a boundary! Thus with regards
to cobordism we get the following theorem:

Theorem 3.1. If M1 and M2 are compact, oriented, cobordant mani-
folds, then their Pontryagin numbers agree.

Proof. Because they are cobordant, there is an oriented N such that
∂N = M1 −M2. Thus Pontryagin numbers of M1 −M2 vanish, and thus
since we have

∫
M1−M2

α =
∫
M1

α−
∫
M2

α, the conclusion follows. �

3.2 The Euler class

We now consider the case of oriented vector bundles. An orientation on a rank
r vector bundle E →M is an equivalence class of nowhere vanishing sections of
the line bundle ΛrE under the equivalence relation:

s ∼ t ⇐⇒ t = fs, f > 0.

Proposition 3.2. A rank r vector bundle E →M has an orientation
if and only if the line bundle ΛrE is trivial.

A frame over U ⊆ M is positively oriented if at each point, the frame
agrees with the orientation of Ep. Now instead of just discussing orthonormal
frames, we can discuss positively oriented orthonormal frames.

Given two positively oriented, orthonormal frames e and ẽ over U , there is
an A : U → SO(r) such that:

ẽ = eA.

So now we focus instead of on GL(r,R)-invariant polynomials, on the more
general SO(r)-invariant polynomials. As it turns out, if r is odd, then these sets
coincide. If r is even, then we have a new generator to consider.

If X ∈ so(2n), the Pfaffian of X is the polynomial Pf X satisfying:

detX = (Pf X)2.

Proposition 3.3.

Pf(ATXA) = detA · Pf X.
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This implies that for A ∈ SO(2n):

Pf(A−1XA) = Pf(ATXA) = detA · Pf X = Pf X,

and so Pf X is SO(2n) invariant! As in the case for Inv(gl(r,R)), we can show
that Pf(Ω) is a closed, global form which is independent of connection, and thus
it is a characteristic class (indeed, it satisfies the categorical definition!). We
define the Euler class of the oriented vector bundle E of rank 2n to be:

e(E) :=

[
Pf

(
1

2π
Ω

)]
.

This class is so-called due to the following theorem which we will not prove:

Theorem 3.4 (Chern-Gauss-Bonnet). Let M be a compact, oriented
Riemannian manifold. Then:∫

M

Pf

(
1

2π
Ω

)
= χ(M),

the Euler characteristic of M .
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