
A little about Gram-Schmidt

Luke Volk

September 9, 2019

In an inner product space

Theorem 1 (Gram-Schmidt). If (V, 〈·, ·〉) is a finite dimensional inner
product space has a basis (u1, u2, . . . , un) such that:

〈ui, uj〉 = δij .

The proof is well known. Take a basis (v1, v2, . . . , vn) (which doesn’t neces-
sarily satisfy the property of Theorem 1), and then define:

u1 := v1,

ui := vi −
i−1∑
j=1

〈vi, uj〉
〈uj , uj〉

uj , 2 5 i 5 n,

and then note we may easily normalize all the vectors. This (after doing your
homework) works well.

Elaboration . It is instructive to think about this process in R2. If I hand
you a basis consisting of vectors v1, v2 ∈ R2, then in general we are going to
have something that looks like this:

v1

v2

If we take u1 := v1, then we can project v2 onto u1 (using the formula

proju1
(v2) = 〈v2,u1〉

〈u1,u1〉u1), and then subtract this projection from v2 to yield a
vector

u2 := v2 − proju1
(v2),
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which is orthogonal to u1!

u1

v2

proju1
(v2)

u2

By subtracting the projection proju1
(v2) from v2, we have removed the part

of v2 which is not orthogonal to u1.

However, we can try phrasing the proof in a different way:

1. Pick any unit vector u1 ∈ V . Then consider V1 := span{u1} and the
orthogonal complement:

V ⊥1 := {v ∈ V | ∀u ∈ V1 . 〈v, u〉 = 0}.

2. If dimV ⊥1 = 0, then we have our basis. Otherwise we have a non-zero
v2 ∈ V ⊥1 (such that 〈u1, v2〉 = 0), and we normalize it to u2 which satisfies
the analogous property.

3. Set V2 := span{u1, u2} and analogously define V ⊥2 .

4. Continue this process until dimV ⊥n = 0 for some n.

The other (more constructive) proof of Gram-Schmidt has the benefit of showing
how we can actually choose the ui, given that we have a basis consisting of a
bunch of vi.

In a symplectic space

Now let V be a finite dimensional vector space and ω : V × V → R a non-
degenerate bilinear form. Note that our inner product from before was a
non-degenerate bilinear form. Note we can follow a similar process:

1. Pick any vector u1 ∈ V . Then consider V1 := span{u1}, defining:

V ω
1 := {v ∈ V | ∀u ∈ V1 . ω(v, u) = 0}.

Note that before, our inner product was symmetric, while ω is not necessarily sym-
metric. This makes the ω-orthogonal complement, V ω

1 , the left ω-orthogonal
complement of V1. Similarly, you get a right complement. If we have that
ω is skew-symmetric (i.e. ω(u, v) = −ω(v, u)) or symmetric, then the left and
right complements coincide (exercise: when else do they coincide?). We will now
restrict our attention to when ω is skew-symmetric. Now note that we run into
a problem if we continued following the above.
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Example 2. Consider R2 with the skew-symmetric, non-degenerate
bilinear form ω given by:

ω(u, v) := uT
[

0 1
−1 0

]
v.

If we just pick u1 =

[
1
0

]
, then we note that:

V ω
1 = V1.

This is problematic. We can’t pick a vector u2 ∈ V ω
1 such that {u1, u2}

is linearly independent, unlike with the inner product (exercise: explain
why this happens with skew-symmetric forms). But what we can do, by
non-degeneracy of ω, is find a v1 ∈ V such that ω(u1, v1) = 1 (exercise:
find one for this example).

So how we proceed in coming up with a more or less standardized basis is by
doing just that:

2. Find v1 ∈ V such that ω(u1, v1) = 1 (guaranteed by non-degeneracy of ω).

It’s not clear where to go from here, so let’s see if we at all fixed our problem
from before (as now our algorithm solves Example 2):

3. Define W1 := span{u1, v1} and then:

Wω
1 = {v ∈ V | ∀w ∈W1 . ω(v, w) = 0}.

The thing that was nice with the inner product was that for any subspace U ≤ V ,
we have (exercise!) that:

V = U ⊕ U⊥.
In the above example, we found that this is not always the case with a skew-
symmetric, non-degenerate bilinear form ω. However, if we want to use the same
approach to defining a nice basis (nice with respect to ω), then we would like
this to at least be true in the circumstance for W1...maybe?

Proposition 3. With the notation as above, we have:

V = W1 ⊕Wω
1 .

Proof. Below are some hints of the exercise in linear algebra:

• You want to prove that the intersection of the summands is {0} and
that V = W1 +Wω

1 .
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• Take an arbitrary vector w in the intersection W1 ∩ Wω
1 : what is

ω(u1, w)? ω(v1, w)?

• If w ∈ V , then add and subtract both ω(w, u1)v1 and ω(w, v1)u1 to
w and re-arrange the expression in a smart way to conclude that it is
clear that w ∈W1 +Wω

1 .

�

Thus we have exactly what we want to proceed as we did with the inner
product space! Keep in mind now that out of each Wi we will take not one
vector, but two!

4. Take a non-zero u2 ∈ Wω
1 and find v2 ∈ Wω

1 such that ω(u2, v2) = 1.
Define W2 := span{u2, v2} and then Wω

2 analogously.

In this manner, we can build up a direct sum of vector subspaces:

V = W1 ⊕W2 ⊕ . . .

which, by finite dimensionality of V , must come to a stop. Hence we get a special
basis:

Theorem 4 (Symplectic Gram-Schmidt). Let V be a finite dimensional
vector space and ω a skew-symmetric, non-degenerate bilinear form on
V a. Then there exists a basis (u1, v1, u2, v2, . . . , un, vn) such that:{

ω(ui, uj) = ω(vi, vj) = 0,

ω(ui, vj) = δij .

aA skew-symmetric, non-degenerate bilinear form ω on V is called a symplectic
form. The pair (V, ω) is called a symplectic vector space.

We conclude this mathematical adventure with the following corollaries:

Corollary 5. Note that:

(i) Such a V is necessarily even dimensional, dimV = 2n.

(ii) Under this basis, ω is of the form:

ω =

[
0 I
−I 0

]
,

where I is the n× n identity matrix.
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