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In these notes we explore the concept of symplectic rigidity. To do
this with minimal prerequisites, we have decided to limit ourselves to
the much easier linear background of symplectic vector spaces (rather
than manifolds). As a result, all that is required is a first course
in linear algebra (including vector spaces) and a curious mind. All
vector spaces are assumed to be finite-dimensional.
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1 Symplectic vector spaces

1.1 Area and the symplectic forms

Recall that the magnitude of the cross product of two vectors u, v ∈ R3 gives
the area of the parallelogram with sides spanned by u and v. Symbolically:

area(u, v) = ‖u× v‖.

‖u× v‖

u

v
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In particular, we can restrict ourselves to u, v ∈ R2 by setting the z-coordinate
to be 0. Those familiar with determinants will then note that the signed area of
the parallelogram spanned by u, v ∈ R2 is given by the determinant:

area(u, v) = det

 | |
u v
| |

 ,
where the vectors u and v are written as columns.

Exercise 1.1. Show that these formulas for area agree up to a change
in sign.

From now on, our areas will always be signed, unlike in the first formula.

Still considering u, v ∈ R2, note that we may write:

area(u, v) = u>
[

0 1
−1 0

]
v,

where u> denotes the transposition of u from a column to row vector. The
matrix [

0 1
−1 0

]
is an example of a bilinear form on R2, meaning that it is a function R2×R2 → R
which is linear in both components. From either direct calculation or the
properties of the cross product or determinant, one can deduce (and the reader
is encouraged to verify) the following properties:

(i) area is a bilinear form.

(ii) area is skew-symmetric:

area(u, v) = − area(v, u).

(iii) area is non-degenerate:

area(u, v) = 0 for all v ∈ R2 =⇒ u = 0.

More generally, a non-degenerate bilinear form B : V × V → R on a vector space
V which is skew-symmetric is called a symplectic form on V . A vector space
endowed with a symplectic form is called a symplectic vector space.

Example 1.2. The bilinear form area is a bilinear form for V = R2.

This example can be modestly generalised to arbitrary even dimension by
doing the following exercise:
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Exercise 1.3. Show that n = 1 the matrix:

ω0 :=

[
0 In
−In 0

]
,

is a symplectic form on R2n, using the transformation rule:

(u, v) 7→ 〈u, ω0v〉 = u>ω0v.

The matrix ω0 is called the standard symplectic form on R2n, and in a
way, it gives a higher dimensional analogue to area (but not volume, like the
determinant gives).

Given an arbitrary symplectic form ω on a vector space V , there is a standard
form1 in which we can express it as a matrix:

Proposition 1.4. Let V be a finite dimensional vector space endowed
with a non-degenerate, skew-symmetric bilinear form ω. Then there
exists a basis {ei, fi | 1 5 i 5 n} of V such that:

ω(ei, ej) = ω(fi, fj) = 0, ω(ei, fj) = δi,j .

Proof. Pick a non-zero vector in V and call it e1. Note that ω is non-
degenerate, and so we may find an f1 ∈ V such that ω(e1, f1) = 1. Define
V1 := span{e1, f1} and define a respective set:

V ω
1 := {v ∈ V | ∀w ∈ V1 . ω(w, v) = 0}.

Exercise 1.5. Show that V = V1 ⊕ V ω
1 . That is, show both of the

following:
V = V1 + V ω

1 , and V1 ∩ V ω
1 = {0}.

This set acts as an “orthogonal” complement with respect to the bilinear
form ω.

Repeat this process, picking a non-zero e2 ∈ V ω
1 , and an f2 such that

ω(e2, f2) = 1, where we then define V2 and so forth.
This process reduces the dimension by two each iteration and eventually

halts as V is finite dimensional. Moreover, V is even-dimensional because

1For an elaboration on this process, ask me for my notes on the Gram-Schmidt algorithm.
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otherwise we would conclude this process with a 1-dimensional subspace
spanned by a vector u such that ω(u, ·) ≡ 0. �

Corollary 1.6. If V admits a symplectic form, then V is necessarily
even dimensional.

We will call this basis a symplectic basis for ω. In particular, we see that
in this basis the symplectic form ω is represented by the matrix:

ω =

[
0 In
−In 0

]
.

That is to say, we may choose a basis so that ω is represented by exactly the
standard symplectic form ω0 on R2n. Note that regardless of the basis, if ω is a
bilinear form represented by the matrix Ω, then we may write:

ω(u, v) = 〈u,Ωv〉.

Thus as a result of the previous proposition, all symplectic forms “act” like
Example 1.3. With regards to this notation, we will abuse notation sometimes
and treat ω as equivalent to its matrix when the basis is clear, and so the identity
would be stated as ω(u, v) = 〈u, ωv〉.

Note that if ω were degenerate and admitted a non-zero u ∈ V such that
ω(u, ·) = 0, then we would have additional rows (and columns) of zeros in the
matrix representation of ω. Indeed, if

U = {u ∈ V | ω(u, ·) = 0},

then the dimension of this subspace U gives exactly how many rows/columns of
zeros are added, the matrix resembling:

0 In 0 · · · 0
−In 0 0

0
...

... 0
0 0 · · · 0 0



Exercise 1.7. Show that ω is non-degenerate if and only if the assign-
ment

v ∈ V 7→ ω(v, ·),

is an isomorphism from V to the vector space of linear forms, V ∗.
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1.2 The orthogonal group

Consider a vector space V with an inner product 〈·, ·〉. When we impose
additional structure (such as inner products) on vector spaces, we tend to pay
special attention to functions between the spaces which preserve this additional
structure. In this way, the concept of orthogonal maps arises from considering
inner product spaces. An orthogonal map on V is a linear map A : V → V
such that:

〈A(u), A(v)〉 = 〈u, v〉, for all u, v ∈ V.

Denote the set of orthogonal maps on V by O(V ), and in particular we denote
O(n) := O(Rn). Orthogonal maps preserve the notions of angle and length in
inner product spaces.

Exercise 1.8. Show that each A ∈ O(V ) is an isomorphism—it is both
injective and surjective.

From the above exercise, we know that each element of O(V ) is invertible
(and the inverses are orthogonal themselves). Moreover, the identity map is in
O(V ), and thus O(V ) forms a group.

Exercise 1.9. Show that one may use the Gram-Schmidt process in
order to find a basis of V that induces an isomorphism O(V ) ∼= O(n),
where dimV = n.

Thus we have that only the dimension of V matters (up to ismorphism), so
we can restrict our attention to O(n). We call O(n) the orthogonal group in
dimension n.

In Rn, the standard inner product of vectors u, v ∈ Rn is given by:

〈u, v〉 = u>v.

If A ∈ O(n) is viewed as an n×n matrix in M(n,R), then we know by definition:

〈Au,Av〉 = 〈u, v〉 ⇐⇒ (Au)>(Av) = u>v

⇐⇒ u>A>Av = u>v.

Exercise 1.10. Using u>A>Av = u>v for all u, v ∈ Rn, deduce that:

A>A = In,

the n× n identity matrix.
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Note that for square matrices, a left-inverse is also a right inverse, and so
this gives an alternative definition for O(n):

O(n) = {A ∈M(n,R) | A>A = AA> = In}.

1.3 The symplectic group

Now instead of considering maps in inner product spaces, we will consider maps
in symplectic vector spaces. Let V be a vector space with a symplectic form ω.
We call a linear map Ψ: V → V a symplectomorphism2 such that:

ω(Ψ(u),Ψ(v)) = ω(u, v), for all u, v ∈ V.

Exercise 1.11. Show that a symplectomorphism is necessarily an iso-
morphism.

Similarly to the orthogonal group, we can justify the definition of the sym-
plectic group in dimension 2n, Sp(2n), namely that we only have one such
space up to symplectomorphism.

Exercise 1.12. Taking hints from the calculation for the orthogonal
group, show that:

Sp(2n) = {Ψ ∈M(2n,R) | ΨTω0Ψ = ω0}.

1.4 The affine symplectic group

Recall that a linear map between (real) vector spaces V and W is a map
A : V →W satisfying for each v, v′ ∈ V and λ ∈ R:

(i) A(v + v′) = A(v) +A(v′),

(ii) A(λv) = λA(v).

Linear maps act as the subspace-preserving maps in the study of linear algebra.
An important corollary of the above definition is that f fixes the origin:

A(0) = 0.

2Technically we can define a map between symplectic vector spaces (V, ωV ) and (W,ωW )
which preserves the symplectic forms:

ωW (Ψ(u),Ψ(v)) = ωV (u, v), for all u, v ∈ V.

However, finite dimensionality of the domain and codomain implies that such a map will be
an isomorphism, and so we will simply consider symplectomorphisms on a symplectic vector
space V itself rather than between symplectic vector spaces.
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Example 1.13. When V = W = R, a map A is linear if and only if
there exists a λ ∈ R such that:

A(v) = λv.

Geometrically, A (more correctly: imA) must be a line passing through
the origin. This might be at odds with some terminology the reader
has encountered before. In particular, a so-called linear functions of the
form:

B(v) = λv + µ,

for fixed λ, µ ∈ R. Such a map is not “linear” as defined above, but
actually satisfies a looser definition called “affine”.

An affine map between (real) vector spaces V and W is a map A : V →W
such that there exists a linear map B : V →W and b ∈W such that:

A(v) = B(v) + b.

The idea is that an affine mimics subspace-preserving properties of a linear
function, but without the datum of a distinguished “origin” for your vector
spaces. In this way, an affine map is a composition of a linear map with a
translation.

Example 1.14. Contrasting with the linear case, when V = W = R, a
map A is affine if and only if there exists λ, µ ∈ R such that:

A(v) = λv + µ.

So the affine maps consist of all lines passing through any point, not
only those that pass through the origin.

Just as we defined the symplectic group Sp(2n) using linear maps, we can do
similarly with affine maps. Define an affine symplectomorphism on R2n to
be a map A : R2n → R2n such that there exists a Ψ ∈ Sp(2n) and b ∈ R2n such
that:

A(v) = Ψ(v) + b.

Denote the group3 of affine symplectomorphisms to be ASp(2n).

2 Non-squeezing

2.1 Volume preserving maps

Recall (or learn for the first time!) that the determinant of an n× n matrix A
is the n-dimensional volume of the parallelotope spanned by the columns (or

3An additional exercise might be to justify the use of this word here.
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equivalently, the rows) of A. A linear map Ψ: Rn → Rn is said to be volume
preserving if for any n× n matrix,

A =

 | | |
c1 c2 · · · cn
| | |

 ,
we have:

|det(ΨA)| =

∣∣∣∣∣∣det

 | | |
Ψ(c1) Ψ(c2) · · · Ψ(cn)
| | |

∣∣∣∣∣∣ = |detA|.

That is to say, Ψ is volume preserving if and only if det Ψ = ±1, it taking
parallelotopes to parallelotopes of the same volume modulo sign. From the
properties of the determinant, we see that for a symplectopmorphism Ψ ∈ Sp(2n):

det(ΨTω0Ψ) = detω0 =⇒ (det Ψ)2 = 1 =⇒ det Ψ = ±1.

And thus symplectomorphisms are examples of volume preserving maps.

2.2 Camels

Consider the following biblical quote:

And again I say unto you, It is easier for a camel to go through the
eye of a needle, than for a rich man to enter into the kingdom of
God.

Matthew 19:24 (KJV)

Of course, where only volume preserving is concerned, a mathematician
equipped would no doubt be able to squeeze a camel through the eye of a needle,
the camel effectively deforming into a noodle to thread it through the eye.
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A little easier on the imagination is wondering how simple shapes such as
balls deform under particular classes of transformations. Early in history it was
not clear how symplectomorphisms (in the smooth, differential geometric sense
of the word—not linear ones!) behaved with regards to something even as simple
as a ball. As it turns out, Mikhail Gromov famously proved that the camel
definitely cannot go through the eye of the needle if Jesus were assuming the
camel to be symplectic.

2.3 Non-squeezing

We simplify Jesus’s setup. Consider a (2-dimensional) ball of radius r (the
“camel”) and a wall with a cylindrical hole of radius R (“the needle”). The idea
is that in order for the ball to pass through the hole from one side of the wall to
the other (that is, “go through the eye of a needle”), it surely must be able to
embed (symplectically) in a cylinder of infinite length. Consider R2n as the set
of points with coordinates:

(x1, x2, . . . , xn, y1, y2, . . . , yn).

Define the following objects:

• The symplectic (closed) ball of radius r > 0,

B(r) := {(x1, y1, . . . , xn, yn) ∈ R2n |
∑

xi
2 + yi

2 5 r2}.

• The symplectic cylinder of radius r > 0,

Z(r) := {(x1, y1, . . . , xn, yn) ∈ R2n | x12 + y1
2 5 r2}.

Note that the cylinder is “symplectic” in the sense that the coordinates x1, y1
spanning the disk correspond to basis elements e1 and f1 so that ω0(e1, f1) 6= 0.

Now the theorem we will prove is that in order for a ball B(r) to symplectically
embed (via an affine symplectomorphism in ASp(2n)) into the cylinder Z(R),
we must have:

r 5 R.

That is, the radius of the ball is less than or equal to that of the cylinder (the
hole).

Theorem 2.1 (Affine non-squeezing). Let A : R2n → R2n be an affine
symplectomorphism such that:

A(B(r)) ⊆ Z(R).

Then r 5 R.
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Proof. Suppose without loss of generality that the radius of the ball is r = 1.
Decompose A into its Sp(2n) and translation parts:

A(z) = Ψ(z) + b.

Note that A(B(r)) ⊆ Z(R) is equivalent to the boundary of B(r) being
embedded in Z(R). In particular, if {e1, f1, . . . , en, fn} is the standard
symplectic basis then the condition A(B(r)) ⊆ Z(R) becomesa:

sup
‖z‖=1

{
〈A(z), e1〉2 + 〈A(z), f1〉2

}
5 R2.

Because A(z) = Ψ(z) + b, we may write it as:

R2 = sup
‖z‖=1

{
〈Ψ(z) + b, e1〉2 + 〈Ψ(z) + b, f1〉2

}
= sup
‖z‖=1

{
(〈Ψ(z), e1〉+ 〈b, e1〉)2 + (〈Ψ(z), f1〉+ 〈b, f1〉)2

}
= sup
‖z‖=1

{
(〈z,Ψ>e1〉+ 〈b, e1〉)2 + (〈z,Ψ>f1〉+ 〈b, f1〉)2

}
. (?)

Note that:

ω(Ψ>e1,Ψ
>f1) = 〈Ψ>e1, ωΨ>f1〉

= 〈e1, ΨωΨ>f1〉,

but ΨωΨ> = ω, because Ψ ∈ Sp(2n), hence:

ω(Ψ>e1,Ψ
>f1) = 〈e1, ωf1〉 = ω(e1, f1) = 1.

Thus the Cauchy-Schwarz inequality gives:

‖Ψ>e1‖ · ‖Ψ>f1‖ = ω(Ψ>e1,Ψ
>f1) = 1,

implying that one of ‖Ψ>e1‖ or ‖Ψ>f1‖ is greater than or equal to 1. As-
suming without loss of generality that ‖Ψ>e1‖ = 1, then we can set

z0 := ± Ψ>e1
‖Ψ>e1‖

,

which is on the boundary of B and gives us a lowerbound for the supremum
in (?):

(〈z0,Ψ>e1〉+ 〈b, e1〉)2︸ ︷︷ ︸
= (1+ε)2 = 1

+ (〈z0,Ψ>f1〉+ 〈b, f1〉)2︸ ︷︷ ︸
= 0

= 1.
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Hence we have that the supremum is greater or equal to 1, concluding:

R = 1.

�
aWhy does this make sense? The products 〈A(z), e1〉 and 〈A(z), f1〉 fetch the coefficients

of A(z) in the e1 and f1 coordinates, respectively. Thus what we have inside the supremum
is the square of the “radius” of z (with respect to the circular face of the cylinder), which
we’d expect for all z on the boundary (i.e. z such that ‖z‖ = 1) to be less than the square
of the radius of the cylinder, R2.

So Jesus’s statement holds extra meaning if he was referring to a symplectic
camel, and not just your regular joe volume preserving camel. In particular,
there are balls of equal volume which are not symplectomorphic.

2.4 A step further

The story for affine non-squeezing does not stop there. We can define a set
B ⊆ R2n to be a linear symplectic ball of radius r if it is symplectomorphic
to B(r), and a set Z ⊆ R2n a linear symplectic cylinder of radius R if it is
symplectimorphic to Z(R).

A Ψ ∈M(2n,R) has the linear non-squeezing property if for each linear
symplectic ball B of radius r and linear symplectic cylinder Z of radius R, we
have:

Ψ(B) ⊆ Z =⇒ r 5 R.

With some effort, the following theorem may be proved:

Theorem 2.2. If Ψ ∈M(2n,R) is an invertible matrix such that Ψ and
Ψ−1 both have the linear non-squeezing property, then for all u, v ∈ R2n

either:

ω0(Ψu,Ψv) = ω0(u, v), or ω0(Ψu,Ψv) = −ω0(u, v).

That is to say, either the matrix Ψ is symplectic (Ψ ∈ Sp(2n)), or it is
anti-symplectic.
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